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ABSTRADT

A small-deilection anilysis is developed for the elastic ivnerbay
buckling of ring-stiffeued cylindrical shells in which the influence of the
rings on deformations before and during buciding is considered.

Tests were carried out with a machined, ring-stiffened cylinder
(BR-4B) subjected to external hydrostatic pressure. Collapse was initi-
ated by elastic asymmetric buckling of the shell. Strain measuremente
taken during the test demonstrated that the Southwell method of determin-
ing buckling strength nondestructively is applicable in the case of inter-
bay buckling.

The results of this and three other tests of machined cylinders aze
in good agreement with the theory. While the Von Mises theory is inac-
curate for closely spaced rings, its continued application for éstimating
elastic buckling strength is probably justified since it is always conser-

vative and can be represented in a simple form.

"INTRODUCTION
rd : .

One problem in the field of pressur~-vessel design that has been of
particular interest for me.ny yvears is the ela;s-tic instability of thin cylin-
drical shells under' hydrostatic pressure. In practice, it is the buckling
which occurs between closely spa.ced r1ng stiffeners as shown in Figure 1.
Despite the conmderable study Wthh th1s—pr—oblem has received, some
additional 1nvest1ga.t1on appeared needed in at least two areas. One of
these concerned expenmenta.l work w1th short shells since a thorough
evaluation of theory was still lackmg ~The: other involved the analytical
stuldy of the rnﬁueﬁce of the. rmga un e bucmmg strength. ‘ Several in-
vest1gator1 have considered thm effect, but m each case 1t‘s eemed that
the treatment has been either approximate or 1ncomp1ete.

As partof a cont1nu1ng program at the Model Basin to study the
pPhenomenon of shell instability, effort has been directed toward e11m1nat-
ing some of these deficiencies, The present report, which gives the re-
sults of this effort, is divided into three sections.
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The first deals with the devel-

opment of a2 small deflection analysis
which accounts for the restraint pro-
vided by the rings. This is done by
expressing the deflection both bcforc
and during buckling in trigonometric
series form and obtaining a sclution
through the use of energy methods.
The special cases of simple and
clamped support are also treated.
In addition, the significance of in-
cluding the energy associated with
bending stresses developed prior to
buckling is examined. Much of the
work is based on relationa derived
__in nppendixes .

The sccond section describes
tests of a machined cylinder desig-
nated Mcdel BR-4B. This includes
a discussion of ‘strain data, buckling

strength, and mode of collapse. The

applicability of the Scuthwell method

Figure 1 - Shell Instability

for determining shell buckling strength
is also examined.

In the third section, the present analysis and others are evaluated
on the basis of the test results of Model BR-4B and of recent tests of

three other machined cylinders,

BACKGROUND

In view of all the effort that has been devoted to the study of the
elastic instability of cylindrical shells, it is rather curious that there has
yet to be a thorough confirmation of theory by experiment, at least where

closely spaced stiffeners are concerned. Surprisingly enough, this has
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not been the cage with the problem

of general instability wherein both
rings and shell undergo extensive
deformations (Figure 2). It is due
largely to the theoretical work of
Kendrick ' *? among others, and
a rather extensive experimental
program conducted at the Model

45,6 that the elastic general

Basin
instability problem has forall prac-
tical purpclaues been solved. This
progress is even more striking when
it is realized that no rigorous ana-
lytical solution was undertaken

prior to the work of Salerno and

would appear the simpler of the two

and which has been studiecd over a

much longer period? Basically it . L

is the disparity which has persisted Figure 2 - General Instabi.ity

in varying degree between the phys-

ical conditions prevailing in the ex-

periments and those which have received theoretical consideration.
First, let it be said that theoretical devizlopment has lacked neither

variety nor distinction. The case of a simply supported shell of finite

length under radial pressure was first treated by Southwell in 1913.°

The next year Von Mises presented a more exact analysis,” which he ex-

1 In that same year, Tokugawal!

tended in 1929 to include end pressure.
published almost identical results to those of Von Mises. While rightly

regarded as classics today, these analyses are not completely rigorous

'References are listed on page 101.
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in that they do not account for the influence of the boundary conditions on
deflections prior to buckling. This influence is unimportant for relatively
long shells, but it may not be for short shells such as are embodied in
submarine hulls. Recognizing this, Von Sanden and T6lke!? in 1932 pub-
noa & vunprehensive paper on iile buckling of shelis wherein the etiect
wag considered. Their resgults included not only the case of simple sup-
port but that for {inite stiffening rings as well. In this latter case, how-
ever, they assumed that durihg buckling, the rings merely provide simple
support. Using a different mathamatical approach, Kendrick? also ob-
tained a solution to this problem. While neither analysis included the
rotational restraint which the rings presumably would prdvide during
buckling, the results showed that buckling pressures for short ring spac-
ings can be significantly higher' than those given by either Von Mises or
Tokugawa. _

Salerno and Levine“' ": were apparently the first to include the in-

cdn‘;putma tbe bucklmg preasure, they neglected the prebucklmg defor-

mations altogether. Because of this shortcoming and because of certain
errors in their energy expressions, the analysis is not considered cor-
rect. Others, notably Sturm!® and Nash,'® investigated the consequences
of having stiffeners which provide full fixity. The resulting buckling pres-
sures were much higher for closely spaced stiffeners than for the case of
simple support, even though the effect of the boundaryicundittb‘ﬂs on the
prebuckling deformations was neglected,

$till others have stiudied the possibility of '"snap-through'' buckling
at pressures much lower than the small deflection analyses just mentioned
might predict. Notable contributions to this development of large deflec-
tion theory include the work of I'onnell,"'® Ianghaar and Boresi,!? and
Kempner and Crouzet-Pascal.?® These studies have shcewn generally that
the phenomenon of ""'snap-through' in cylindrical shells under hydrostatic
pressure is possible and that the associated buckling pressure is some-
what influenced by geometrical imperfections. Experimental studies by
Kirstein and Wenk ? have borne out these conclusions. So far, however,
it has been difficult to assess quantitatively the imperfections present in

test structures. It has also been recognized that such imperfections can



,AWindenburg a_studies, 2 for example, have beeirin the long-shell range

have an important influence on the stressee existing in the shell prior to
buckling. Sturm,'® Bodner and Berks,?? and Galletly and Bart,”® for ex-
ample, have shown that as a result of irregularities in circularity, the
stresses can be sc greatly increased that inelastic collapse can occur at
a pressure well beiow that which elastic buckiing tneory wouid predici.

Inelastic buckling, which is frequently the mode of collapse for effi-
ciently designed shells, has also received some attention in recent years,
For example, the work of Gerard,*'?® Lunchick,? Noti,# and Reynclda
have shown that inelastic buckling strength can often be predicted with
reasonable accuracy even though the complexity of the problem virtually
precludes a rigorous analys ,. These investigatoras, it should be noted,
have had the benefit of much more experimental data than has been avail-
able for the study of elastic buckling,

It ia because of this lack of data that a thorough evaluation of elasg-
tic bucklmg theory has not been possible. Most of the elastic data from

whereas data for short shella, i.e., those with closely spaced stiffeners,
are extremely limited., This results from the fact that the source of much
of the available data for short shells has been proof tests of pressure ves-
sels designed for structural efficiency rather than for the study of elastic
buckling. Such structures are so designed that collapse rarely occurs
before stresses have exceeded the elastic limit of the material, Conse-
quently, tests of this nature seldom prcvide pertinent data for the evalua-
tion of elastic buckling theory, although they have sometimes been used
for that purpose. On the other hand, some cylinders specifically designed
to buckle elasticaliy have apparently suffered premature failure by reason
of geometric imperfections, residual fabrication stresses, and other un-
controllable factors, Tests of Models BR-1%" and BR-5' conducted at the
Model Basin are examples in which this problem was encountered. How-
ever, even if all these experimental difficulties had not existed, the vari-
ous theories then available still have not considered realistically the
actual conditions existing at the shell boundaries.

Nearly all the available data have come from tests of ring-stiffened
cylinders, yet most analytical solutions are based cn arbitrary assump-

tions regarding the boundary conditions which the stiffeners impose on

1



the shell. One remedy would be to attempt to duplicate in the laboratory
a set of idealized conditions as assumed for the theory. However, the
best one could do with such a procedure would be to establish the applica-
bility of a certain formula in the special case, for instance, of simple
support. The question of what formula is reliable for the case actually
encountered in practice would still be unanswered.

The recent successes in the studies of general instability veing
machined cylinders of high«strength steel ¥'%°® strongly indicate that the
problems azsociated with imperfections, insufficient yield strength, etc.,
could be overcome and that elastic instability in short, ring-stiffened
shells would be experimentally ruassible. It seemed reascnable, there-
fore, to undertake an experimental study using a machined, ring-stiffened -
cylindex designed to collapse by elastic instability. At the same time, it
appeared worthwhile to explore the possibilities of an analytical approach

whereby the boundary conditiona impoud by the rings could be treated
<7 ‘more Tealistically, T

PART I - THEORY
GENERAL ANALYSIS
The structure under consideration is a circular cylindrical shell of

infinite length reinforced by regularly spaced uniform ring frames, as

shown in Figure 3. The shell is assumed to be isotropic, and its thick-

' nesgs is simall compared to its radius so that the problem is restricted to
i two dimensions.

There is ample experimental evidence (e.g., Figure 1) that under
hydrostatic pressure, asymmetric (lobar) buckling occurs in the mode
shown schematically in Figure 4, Such a pattern, it will be seen, repeats
itself at every other frame. Consequently, in computing the total poten-~
tial of the cylinder in its buckled state, it is convenient to carry out the
calculation over any two adjacent frame spaces.

The total potential U of the system is defined by

. 1
Up = U, +Ug-W [1]



Figure 3 - Stiifened Cylinder and Figure 4 - Asymmetric Sheli |
Coordinate System Buckling Mode

where Ug is the strain energy of the shell,
Ug is the strain énergy of the frames, and
W is the work done by the external pressﬁre.

Referring to Appendixes A, B, and C, where ihese three quantities are

derived, we have for the toﬁal potential

: [eLts 27 o gt
up - EER | fud+u, (v"'«i‘wi).+M2+M(—-+NZ)+2v[uxM
Z(l-v"’)'v(‘)' 4-'0 T e T o \R2 :
2 T w‘ - N 2
Couy gug , : u
() ez ) [ )
+ = (R2+N )+ z(vx-{-wx)]-l- o A\
u ‘ uy M
7 +2 (Vx + —-?-) (wa - Uy vy 0 )]} dxde
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' continued

PR f [.?:.“.’.+ux+ “x(M"' %-)+—12(w2+v2)] dx do
. 'R "]

vg + w
M:-—-e-u—r—--

We -V

N = R

and all terms beyond the third order in .the diaplacements have been dis-

carded. The quantities appearing in Equation [2] are dofined as follows:

1 E is Young's Modulus,

is the shell thickness,
R is the radius to the shell middle surface,
L¢ is the frame spacing,
v is Poisson's ratio,

At is the area of the frame cross section,

T T Bl A 1 71 1 e T ey

is the moment of inertia of a frame about the centroid in

its plane of curvature (Figure 3),



IzG is the moment of inertia of a frame about the centroid out

of its plane of curvature (Figure 3),

e is the distance from the frame centroid to the neutral axis
of shell (Figure 3),

is the torsion constant of the frame {Appendix B),
P is the hydrostatic pressure (positive outward),

6 and x are the e.ngular and axial coordinates (x positwe to the o
: L {30 PRI [ LR 11 G A B |
right}, and

u, v and w are the axial, tangential and radial displacements, respec-

tively (u positive to the right, w positive outward).
The subscripts indicate differentiation.

During buckling, the system passes from an initial or prebuckling
equilibrium atate, in which all deformatior are a C |
“buckled or asymmetric “state. The ¢ a.nge n to
this process may be called AUy . The final buckled state will be described
by the deflections Ups Vi and wF'which are the total of the displacements
developed from the initial application of pressure and are given by

up = G4(x)+ u(x,0)

v(x,9) [3]

Wy = wix) + w(x,0)

where u, v, w are the buckling displacements and u, W are the initial or
prebuckling displacements, being axisymmetric in form for the case of

hydrosgtatic pressure, and satisfying the conditions

(i), o= (),

x Lf
(Fy = oy, [4]
(WX)KIO = (W )x=Lf o

10



“To find the change in total potential, we replace u, v, w in Equation [2]

by ug, Vp» Wi and subtract the total potential for the initial equilibrium

state, With only linear and quadratic terms retained, the result is

EhR 2Lg p2m 2 | ug 2
AUp = e f j‘ {u2+M + 2vau M+(-—-!-)<\r +—)
21-v8) Jo Jo UF x 2 * R

. 2
w I ua Z 2 - 2o o .uﬁ ) ue )]

+ Wy [ZVWxM +(1- v)N(v +---)+ 2u, w ]+ ux{v2+wz

llg 2
+v(-.i—+N)-(l-v)v ]}dxde
Y G , -
,”,"':71'1;';;-:,;,:':!_:}'1'2: _\i.,3.'"l;;, r -';'»':' AF 7” - P P '
ERT J J tRw +Ng+ 2vRw_ N +(l ")(RN +w9)f‘
24R(1~v?)

: 2
-—m N -
w2 2 2 'x 2
+ f[wxe - 2N0+ 2v(R 5 -lwaxNe) -(1- v)(RNx+ wxe) ]

T awg lwxme - ugg _ﬁ- - K'uxxwxx + v(wawxx - wxquG

1- -
-~ RNy “xx) - (-——?——) (RN, + wxe)(Zuxe+ N)] - 2R wyy [Zuxwxx

(152) (o ) o w2 [ 2 (v )
2
X!

_ V(WZB - RNgw,_ )+(1—2—-)(RN W) ]

- 2Uyy [wa Wiy + VNgw, ]} dx de
+[5]

11
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J'ZLf J'z" 5 2, ,2
W w W v
——-+u(-—-+M)+-—-———-+u]dxd6
0 0 [R *\R R2 x

where M and N now involve only the buckling displacements v and w.

As explained in Appendix D, G and W can be expressed by the closed
form solution of Von Sanden and Gtinther 32 for the linear case, or by the
more exact nonlinear solution of Pulos and Salerno.?® ‘- However, as can
be seen from Appendix D, manipulation of either of these solutions could
be extremely cumbersome. Kendrick? provides convincihg evidence of
this in an analysis of the same buckling problern,

A simpler approach is to express U and w in termse of infinite trig-
onometric series, as indicated by Von Sanden and Tolke.!? This has

been carried out in Appendix D with the following results:

_ RZ - @ 20 x 1]
g LR >[1-n2’amcoa( ) | [6]
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Uy = Z}Lh[l-2v+v(2-v)n -S- am cos( ;: )]continued

ms= -~

where, for the equivalent of the Salerno and Pulos solution,

-

no= : -

L¢h =2

—frf—(l+§)+ z:_‘._m_am
. - 1 i 1
m 4

pR 2 _
1+ 4 (—~— 43) +2Eh1 [i+4(2L )](1--—-)
1 [7]

P ’[ 2-;]

R*h

i
1

If the presswie terin in the denominator of a,., is neglected, we have the
equivalent of the Von Sanden and Ginther solution:*

1

d-m;

-
s }]
—d

1+ 4 (27
+(|3

This approximate form is found to be sufficiently accurate for the range
of geometry to be considered, particularly since this analysis is not con-
cerned with an examination of stresses and deflections at di%ocrete points.

Appendix D also gives an alternative means of computing Y a for

the approximate form: ms -
w B
=E(sinh[3+ sinﬂ) :
Zam 2 \coshP - cosf L9]
ms -

*A small discrepancy between the series and closed form solutions re-
sults from neglecting the faying width of the frame, as explained in
Appendix D.

13
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Except for very large values of B, however, the cohvergence is so rapid
that the series form is often the more convenient.

- Having the necessary Equations {5] and [6]. it is possible at this
point to apply the principle of stationary potential and, through the meth-
ods of variational calculus, proceed to a solution of the problem. The
most rigorous preocedure would be to fermulate the partial differential
equations of eguilibrium and then atternpt to solve them. This approach
is rejected here primarily because of the lengthy task which would be in-
volved in obtaining the differential equations. The work of Von Sanden
and T'olke!? indicates that an exact solution to the diiferential.equations
may be entirely possible, provided the initial deflections are expressed
in their trigonometric series form. A simpler procedure which will be
followed here is to apply the Ritz method whereby displacement functions
having arbitfary coefficients are assumed and the problem of satiafying

' the condition for stationary potential ie reduced to the solution of a system

of aigebraic equutions, i -

~

Since the success of this method depends upon the degree to which

_the assumed functions approximate the exact buckling shape, it is impor-

tant to choose a set of functions which permit a wide variation in shape.

Accordingly. the dianlacamanta ara asaumaed as fallawa:

A_X

u = cosné Z cos( m )

_ E' m")
v = 8in nb sm( R

s3]

_S_' n* \

w = cos nb W 8K fe-

m (R Y,

m=1

[10]

where m and n are positive integers and u are the arbitrary

m' Ym' Wm
coefficients,

It can be seen from Figure 5 that with appropriate adjustment of
the coefficients, buckling configurations satisfying simple support, v

tial fixity, or full fixity can be generated. It should be recognize

14
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Figure 5 - Buckling Configurations

far Thraa npgrnnn af 'F‘ivify

although v and w vanish at each
frame for any set of coefficients, no
generalify is lost, since this is one
of the conditions which define the
present buckling problem. Buckling
configurations involving radial and
tangential deflections of the rings
properly belong to the category of

overall buckling or general instabil-

ity which is outside the scope of this

analysir,

While the procedure for solving
the problem in this general form is
straightforward. considerable effort
would be involved, and the results
would probably be unrnanageable.

-1t is desifable. therefore, to intro-

duce simplifying approximations
where possible before proceeding
further. The sections that follow
Cubsidei aeparately threco cascs of

interest: partial fixity (finite rings),

simple support and complete fixity (infinite rings). Certain approxima-

tions and methods peculiar to each case are develbped which lead to sirn-

plified results.

RINGS OF FINITE RIGIDITY

In this case, rings of practical size are considered. The basic

assumption is that the various ring properties are of the same order of

magnitude as comparatkle quantities for the shell. The basic approxima-

tion is to eliminate the unknown deflections u and v through the use of a

stress function, as explained in Appendix E. The complexity of the buck-

ling equations is tsercby reduced by a factor of 3. Since this procedure

constraing u and v, it leads inherently to a higher buckling pressure than



H <3
[ Sy 00 g

would result if complete generality were preserved. However, other in-
vestigators have found that the error thus introduced is extremely small
for the case of a simply supported shell under hydrostatic loading. The
assumption in this analysis is that the error will also be small in the case
of ring support where the rings are of practical size. In the case of a fully
clamped shell (corresponding to a ring of infinite rigidity), the assump-
tion is not valid for the assumed buckling configuration, Equation [10],
as will be discussed in a later section,

From Appendix E, the equations defining the stress function F(x,0)
and the deflections are

Fw
vip . XX . 9
s B
S - I
u, = E(RZ "Fxx)
_ R ~ Fop
o = E (Fa-v RZ-") " 1]
Yo -2$l+v!F
vx+T!- - R x60
a4 204 at

where the operator V4 =

+ +
ox? RZ%90%25x% R4%pot

The remaining unknown deflection w is still assumed to have the trigono-
metric series form (Equation [ 10]). If this series is now substituted in

Equations [11], the result is

o ¢
A X
co3 nd Z Umwm cos( r;; )
m:= )

w®v =
© 5 [12]
-y x
v = gin no S Vmwm sin"( n; ")
mz= X

16



m=1
= AX
F = cos nd 2 fin sin( ? )
m=i
ER .2
fm = "'_2"¢m m
)‘m
®m
Uy = - — [} -(1+v)og,] [12]
m ' continued

3

Vo, = T_iﬂ L1+ (14 v) by ]
A'!'!'l.

2
A

2 2
n '”‘m

When these quantities are introduced in E'qua.tion [5], certain simplifica-

tions arise. It can be secen that
Eh ZLf 2 2 | 1-v ue 2
_EbR_ wl+ M2+ 2vu M+ v +—-) dx do
2(1- vz) 2 X R

2L¢ 2 F, F
f fJ' ﬂ{(v F)Z 4 201+ ) [( "9) - 08 99]}dxde
o)

when substitutions are made from Equation [11]. Furthermore,

2Ly p27 2L¢ 8 =2
f j [er - Fxx Fee] dxdb =f [F er] dx
0 o 0 8=0

LT x= 2L
i x=0Q

[13]

[14]

17
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because of the periodicity of F in both the x and 0 directions, as indicated

by Equation [12]. Hence Equation [13] becomes

2L 2m 2
Eh J. ff [2+M2+2vu M+(—-——-)(vx+-l-lﬂ)]dxd9
2(1- v) 0 2 R
ZL 2m [15]
f f (V F) dxde

Equations [12] also provide a useful approximation which is valid for

short shells, The quantity N, which appears repeatedly in Equation [5],
can ba wriiten:

wWg -V | A_x
N = GR =-nsmn§ -;- -{l-——- l+(l§-v)¢ ]}sin(r;

61
1

- B . . \_ T \ .
Since ¢, s 1 and, for short shells, xﬁn >> 1, little accuracy will be lost
if one makes the approximation*

)
N = o= = =-n 8innod

[¢%

f17]

In addition, it will be seen that several terms in the frame energy inte-
grals vanish at the frames according to Equations [10] and [12].

Accordingly, the simplified form of Equaticn [5] is

ZLf 27’ ZLf 27’]
aUL = 22 f (V2 F)? dxdp + —Ths f f [
o 7o 4R(l 24R (1-17)

Weze 2
+-—E-2-—+ 2vw wee+2(l-v)w;‘e}dxd9

[18)

*The accuracy of this approximation depends not on the size of n but
only on the size of A,,. Its range of validity, therefore, includes the case
of axisymmetric buckling of a short shell (n=0, ¢,,, =1) but not that of
asymmetric buckiing of a long shell where X, may not be large.
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. ——

e Rty st B

EIZG 2" R' l (u
2(R+e)z ¥x " R¥e 100 ~

+ —

4(l+v)(R+e)3 Z f

2
xee)] do
Tx= iLf

{(Rwyg + ue)z dae

x=iLf

p2Lg P27 = Fud4 wd
+ _EhR J’ | _.R__[e B+ viwZ + v3) - (1 - V)'-—(x"“"]
2(1-v4 Jy . Rr2 '

0

- T W+ \{: \10
+ wy ?,vwx( ® )+2uxw +(l-v)-——-( ]
2.l
Ug +w
+ G}i y!.—g_-—...g\ + 1_1'12 + ‘_,2 i1- c‘_. v II'I + .‘_1_9. ] ao
U\VTR )T "\.",RI
2L¢ m27¥ -
PR 2,2
_TJ.O 'r [“x(z“"""e)*w tv ]dxde
0
) E(l o+ Ace”) [18]
; 3 E J W W Zg 40 continued
Z(R+e) 0 x=iLg

+ER2AfZ 2r “ee“’
Z(Rte) R(R+e) R

2

€Ug Wyp Wx

+ R(R'f'ﬁ) T d9.+ AUb
X= ILf

where AUy, is the portion of the bending strain energy which involves the

initial deflections.® 1t is given by

2T rWaa Vo T Wy Wgq sVan t W,
*AUb can be simplified further sincef [ 99( 8 )+ 600 "0 )] dé6

0 R

will vanish on integration.
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zar(1-v2) Jo  Jo. R

u W
+ Z‘?x [RZ'“xxWxx + VU, wgo - (wa 90)(—ﬂ+ ZvRw )

WeV

+(1-v)w e(uxe + -i‘-’-)]af RWy [zn (Zuan+

2
‘ . ug Uy W w Weo Mot W

"'“xxw)

+Re 99+W9)}] +u,,[2szz #(3-5v)wie + Zvwgg Wy, ]

[19]

+2Ra_. [Rw.w_. + vw’fw“ﬂr dx do
™ ke ~ o~ K .l

: - - B s - e e et
el RITLLLEELTIA T EA ek b a2

T i T Y et ot L v

After the series expressions, Equations [ 6] and [ 12], are intro-
duced, Equation [18] can be integrated. In so doing, it should be noted
that because the functions of Equation [ 12] are orthogonal in the interval
0 s xs 2Lg, coupling of different buckling modes (i, j) will arise only
from the frame energy and from shell energy terms involving products
of the buckling modes with the initial deflections. The resulting inte-
grated form of Equation [ 18] is

TEL;h  w— ‘ w224 .
2 2 m
AUp = ——= 2 ¥m [‘*’m * ~ ]

201 2102
" 12R% (1-v2)44
7EI 2 < 2 er, ex
22 3 3w D BB (-l 458 (w- )
+ wiws bei | A+ U -—11x Ui - —
[+ [« 4]
+ 21 S Y S‘w §wj 63502 (U + AUy +2)
4(1+v)(Rie)” o7 = =
[20]
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¥m (n 2 2 m) continued

rpl..

@ o

18

[ B LAY TR Y ] ‘ - o -
T LRI RL LR

where!

14 (-1)}

e
[}

m = L+ + 68 [& (1-d, {1+ v)* = (1+2v)]

1-¢m ‘2
+ ¢m(T)[1+(l+ V)d?m]
m

N
a.
1

= ¢;{1-¢;)+ ¢j(1'¢j)

qy = 31_ Sy (1~ [1 = (1= vidy - 5 - &5 5(1 - 31)]

{1+4[‘%%E] Yo

1
Bl oy F i+j)m
SR ]
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AUy has not been given explicitly at this point since it will be necessary to

examine only a few of its characteristic terms. For example, we find

plliy pdm 2w we

o3
1) = - J ] ——2% axde
24R (1-vd) 0 R

[21]

mpLlel(2-v)p 2 2 2 ., |
S [GRZ(I-vZ)][Z " Vm” Z; 3 iy [y j)"-‘*(im]] |
- In=g iz J—

Thias can be compared with other terms, designated by Z, appearing in
AUT :

"po . d ) &) .
2e T [ D) ntvhienn 37 3 vl - syl 122
m=] i=l j=1 -

hZZ

6R?
mation for thin sheils, I; is negligible compared with Z.

<< 1, which is a reasonable approxi-

It is immediately seen that if

w3 2L, p27 W._W_, W
A . J‘ I 2(1-y) X070 44
mpLy hz(l v)
= - 2-v [ ] Z 'S-'n W A; la +
bt 6R2(1-v2) A—' A A(i+j)"‘ M)
[23]
+ . s s =N
a45-5) M)
hé
Compaxz'ing I, with Z, we find that I, is negligible if ZR—Z ()‘-i'”‘j)xi
and B — (A -2 )l are negligible compared with unity. This will hold
6R

for short thin shells except when i or j are large. In such cases, however,

it will be seen from Equation [20] that all_(' i+5) or al( ) will be extremely
3 -
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small so that all terms in which either appears as a multiple will be
negligitle.
A third term is

H

3 2L, p2m
Eh H T 3
I.* -———T Jr f VwaxWi;dede
24R(1-v") Jo \

! o)

vrpl, z ©
1y f r h —y ‘__w 2
(2-vin ———'—-—] 2 wow N [an. O =))

¢ l-12R2'(1.v2) ??% S e S TR (SRR ) A S

i=1

) [24]
* ALy et )]

A comparison with Z reveals that I, will also be negligible 20 long as

b2, A ) h2 ), ¥
—_—t (X, = ;)T and ————— (A + Jl ) are negligible cdmpared
12RZ(1-y8) LT 12RE(1-y2) - e

with n., As in the case 6£ I, when thia does not hold, the question no
longer has importance.
It can be shown further that cach term appearing in AUy will be one

of these three general tvoes. Hence. the entire integral AU. is nemligi~
pDle. In othner woras, the bending stresses assoclated with the pPrepuckiing
deformations can be neglected. ,
Inspection of Equation [20] reveals some additional approximations
which can be made. It will be seen from Equation [12] that U, is negli-
gible compared with A, since ¢m is always less than unity and A i

much greater than unity. Hence,

Won (U + X)) = W Ay [25]
It also follows that
2 N Y A
A 3 ; A
2 .2 m 9mm 2 {.2 m
W, (n +T+ > ~rm)~ wm(n +—§-— [26]
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If nf >> 1.* we can also neglect qQjj» 8© that

. 2?2 . Y.
a__::(i_j)[n -4)\j(/\i-)\j)lijl-q1jj )[n +?/\ (A 42, )QU qu]

[27]

) [nz-zx.j(xi-,\ 4551 - ay

2 -
= ai [n +3’\j("i”~j)‘ij}

3 i+))
When i >> j, this approximation will not hold. However, as explained
for I, and I3, the entire expression (Equation {27]) in such cases is
‘negligible.

We have then for the approximate form of Equa.txon [20]:

rEL:h (& h2 )4
f 2 [2 . m ]

AU = w ¢° + y
T" 2R Z ML 12R%(1-v%) ¢2

m=1

'y
2R%(R+e) 4om j y YY) O ["i RiR (UY‘" eR )] [‘J*""'(UJ“ A

o [+ +] .
=R 3 2
+ W: Webat A A:n
M1+ R+a)? e/ s o1 A4y

R U _ Zeu ZR ﬁ)]

ij R+e iUJ R \R+e 5

Fpo IXG+ Afe
+ 2- ) .
1 { V)"I'( RzAf ) 2 2 Wi W, '51j R+e A j

i=1 j=1

- 2
+ prf w2 n2 + ir_!}_
2 2 m 2 [28]

*This is generally a valid azsumption for asymmetric buckling of short

shells; for axigymmetric buckling, 9y is identically zevo.
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i=l j=1 [28]

2,

coniinued

The buckling condition is now obtained using the principle of station-
ary potential. Minimizing AUp with respect to the wj and multiplying the

resulting equations by —R , one obtains the simultanecus equationa:

ﬂEth
8(AU) 2 n?a} ]
——— =z 0= w;| ¢7+
7 j[j 12R%(1-v2) ¢?
Lea nen/ ed\] v nR /. exi\'l
P ——22 o+ 234y, bys 1A + B Uy = —
" RmrerLm N T RieVi” )J < 1‘” [1, Rre\ i }J
.. RRte)Leh L7 Rtel 7 R /= LI o5 A N
KRn?), 2
+ 3 2 wi'sjil
2(1+v)(R+e)> Leh 4=
$2-n 3 2 Ay
&=V n"R
YT 2 it {R+e j R[)‘ (e U+ )
is1

+ tl'(z;v)n (IxG+Afez) (R+e) Zw 551X

RZ A,

Al
+dw, (nz + -:_Z]—) [29]

Wz-v)n T 5 2
S 2 (g [ 500y

i=1

; 2 P
- a:l\j(i—j) [n + I‘ji()‘i + AJ) ]}
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. R
; where | is B——.
J Eh
: It ie an intercoting conssquence of Cguations [29) that all modes
¢
; corresponding to odd values of i and j are coupled and the same is true of

all even modes, but that no coupling exists between odd and even modes.
This arises from the two consisteni definitions

i+

6.

jio= 14D

0

} unless i, j odd or i, ev;en ~ [30]
*i-n T Muspy o 7O |

The problem thua can be grouped into two sets of 'equa.tione corrasponding
_to the odd and the even modes, respectively. It is clear that only the odd
modes need be considered here since the even modes lead to buckling con-
figurations of the type {shown in Figure 6) which repcats itself at each
v e -ER @I G-ANA i 8:0f 00 practical-significance.. fWhenf‘:th‘G»“{P!Obliﬁiﬁls?ﬁﬂ}giﬁiﬂﬂf‘-”f’-;’5’
! to the dd'&imodés,' Equations [29] become: L S '

2+4 2 .
he ), A 21 2
= 2 ] ( 2 j).| zG [ n (
0 wj l-¢j ¥ lonqu,..Z\ +; MR L 2 ¥ RiR+e) L-h Vlj + 1. Uj

ek.j )] © nz ehi K nZ lj ™
R 2 MM TR\ * Z wy X
R i[ : 9.( 1" R )] 21483 1M
-7 =1 , 1+R (1.+V)R (HR) L;h -
| + ¢ (2-v)n Wi 4 e = 2 ] AL +_)+A.( +__)]
| = "Lig R 1\1+2R 2 AT
2 © ®
I~tAce n°
xGT M\ i - 1 Z ,
( R%A / 1+< L MM w‘{a%(m)[n + 4 (A1 - ) ]
£ R i=]l i=1
2 ( 2 ] )
- Al [T 400+ ) ]} i,j=1,3,5..... [31]
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Figure ¢ - Even Mode Buckling

If j is given an upper limit J, Equations [ 31] can be written in the form

J J .
i=1 i=1]
where:
) n* a4
Bj = ¢ J

+
J 12RZ(1-v2)¢J?-

(1+v)Rzll+%)TL,h
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A requirement for the existence of a nontrivial solution to these

equations is that the determinant formed from the coefficients of the w:

must vanish.

where:

J

Thia rondition can be written in matrix notation as follows:

[B]

[c]

[x] =

{IBl+[Clv } [X] =20

28

17310 Pyzs byge e
byyr  Bytbgs,
bgy o Bgtbge s

LN b

[33]

1J




s
b
a2,

i
!
1

e L

Both [B] and [C] are symmeirical matrixes. The equation has J%l real

roots, all of which are negalive, since pressure was defined positive when
exiernai. Of these roois, ine one (ti)n) whoee absolute value i8 least defines
Py the buckling pressure for n circumfcrential lobee. Since n is an arbi-
trary integer, it is necessary to obtain p for several values of n until the
minimum, or critical pressure, p, is determined. The degree of accuracy
depends, of couree, on the magnitude of J. As J increases, ) should con-
verge toward a limiting value.

While the solution of Equation [33] appears reasonably adaptable to-
a high-speed digital computer, it becomes unmanageable for desk calcula~
tion if J is much greater than 5. To cvercome this difficulty, an approxi-
mate form has been found whereby the computational task is considerably
reduced, With suitable rearrangement, Equation [32] can be put in the
form: ) '

(Bj+¢Cj)w +Gj 2 wih +H Z w, U, o E widji =0 . [34)...

1=

where Bj and Cj are as before defined for Equation [ 32] and

2T -

T R TR USRS TR

2 )
+ Kn ).j +M2-V)ﬂ {X [(IXG+Afe ) nz
(1+v)Rz(1+-§)3th 1+2 RZAg
e e 2e
R(l+ R)] - n °1-_'{ UJ}
ZIanz 2 2 q‘(z ) ek.-
H; = A [l-—(n -l)]+n U.}+-__".Il 2(U - i)
j 2., . €,3 j i iR
R°(1+£)7 L;h 1+£ /
R
- (Z-Q_n_{ 2 29 . 2, Y
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To simplify the equations, we naglect all the dii for which j and i are

unequal, so that Equation [34] becomes

Djwj+Gj zwiX +H WU = 0 Li=1 3, 5....0 [35]
i=1 i=1
where
{2 -v)q

It can be seen from Equation [8] that the approximation is not unreasun-
able. Because a,, decreases ra.pidly with increasing m, most of the a,,

will be neghgﬂ)le In many cascs, it would, in Iact be nocessary to re-

comparison of numerical results. Since a_, approaches zero more slow-
ly as P is increased, a demonstration that the approximation is valid for
a large value of B should be sufficient proof of its validity for smaller

cal exam‘ple .

L-dy
With ‘jJ expressed by Equation [20] and n’ replaced by Aj ( )

a more concise expression for Dj is obtained:
D; = j+ﬂi[xz+ nz{Z-(Z -vin [1-a,014 8¢j)]}] [36]

The advantage of the form of Equations [35] over that of Equations [32]
can now be demonsatrated. With the stipulation that ¢ is such thar all Dj
are different frova zero, one can multiply Equation {34] by lj/I'.\\; and

o

carry out a summation on j from |l to J:

J J G AL T H. 0. J
V" H 3 1 '4 g—’ —-—-«1\—)— ~‘ S’W ‘_,_}_,___,_ T vy oo 0 |‘ 371
praiy ”"kl{ et n; ] - jal _éjwl Jj 137

i=1 i=i ‘ i1 iz)
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A second equation is cbtained by multiplying Equation [35] by Uj/Dj and

performing the same summation:

. J J H.U. J, G. U, J
171 11 A, = 0 38]
E WiUi 1+ § o + B ' WAy = b -
i=1 P =l o=l

i=1

The unknown coefficients w; are eliminated by combining Equations [ 37]

and [38], and the result is a 3ingle equation,

J J 1,60, < HA
SHiUi s ZGi A4 -Z G, U, H, 2y - o [391
i=1 ! =1 5 7 sl i=1
y. Such a2 plot

which can be solved by plotting the left-hand side versus
J+1 :
n one for each root of the e

will have

equal number of asymptotes corresponding tc the vanishing of each of the

Di' The root whose absolute value iz a minimum will lie between the first

“two asymptotes (i = 1, 3). As in'the case of Equation [33] » it is necessary

to try several values of n until the critical pressure P is determined.
The accuracy of the result will, of course, improve as J is increased.
In the case where an initial value of J has been found to be insufficient,
one can proceed.-to the next succeeding J (i.e., increase the order of the
equations by one) with far less labor than would be involved when working

with the matrix, Equation [33].

SIMPLE SUPPORT CONDITIONS

The special case of a shell having regularly spaced simple supports
instead o1 iinite rings can be obtained quite easily f{rom the general equa-

tions. For this case, the conditions are
IzG = IxG =K=20

Afzm

I

w = w=0 atx=0,Lg - [49]

w
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nos oM = e . [40]
Z any, continued

T SRR TN R e T

if pressure term in a__ can
be neglected-

AT

“sinh P+ sinfpy

. 2 coshfP - cosp
1 ).

cak it
i

Substitution of these relations dirsctly into Equation | 32] will not lead to

the correct result since some of the terms in that equation have been mul-~

tiplied by A;, and this would be equivalent to dividing by zero. Instead
we return to Equation [18] and note that because of the relations in Equa-
tion [40], all frame integrals in which w appears as & multiplier as well
as those maultiplied by I, K and IxG will now be zero, It is then evi-
dent that Equation [34] for this case will reduce to

where the B j' j' and dji are defined in Equationl [32] and [34]. This
equation can, of course, be solved in exactly the same manner as Equation
l Equatmn [35], one arxives at a limpla linear equation for this case. That
is, if all dji are neglected where j and i are unequal, the resulting equa-
tion has the uncoupled form:
2
Eh| ,2 b2y
-l R eyt
B. ’ 1ZR%(1-v7) ¢
p = - Ell( J ) . J [42]
n R Cj+ d.. ’

-«r-j- +n2{1 —-—) {1 a;(1+ 8¢bjz)]}

‘fhis solution® gives a minimurn buckling preasure for j=1, which is the

*It may be of some interest to compare Equation [42] with the equiva~
ient solution of Von Mises (Equation [8] of Reference 29}, which in the
terminology of this report is:
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firgt asymptote of Equation [39] with n set equal to v
It is now possible to find the value of n for which p  will be a mini-
1w ‘Pl\

mum. I nz is replaced by kl ( ¢~}" in Eguation [42], P, wiii be effec-
}

tively minimized by seiting 'apn!ﬂxﬁl sgual to zero, The resulting egua-

tion is

*(Footnote continued from preceding page)

2.4
Eh [¢z+ Ry }
- — l
R 12R%(1-v%)

prebuck | The Voﬂ Muel pullurn “will,
in gene {1 be less than thou givon by Equation [42], except where
ap(l+ 8¢ ) > 1. The two solutions are identical {ur p >> 1, where o &P~
proaches geroc, but are not accurate in this range., For sucha case, the

Von Misse formuls [4] of Reforence 22 should be used.

A comparable "solution is that of Von Sanden and [Télke!? which, for
the case of simple support, can be written

2.4
| _g_:[¢ s ]
R 12r%1-0%) 42
n® T2

A
i 2 Zv )_\:_
z+“|- - z:l

' 4

ex=s

Mo B

cotsh-zE - COE& ‘ZE
sinh E + 8in E

In deriving this formula, Von Sarden and Tolke tock into account the ef-
fect of the boundary conditions on the prebuckling deformations. Heowever,
because they did not use the exact Fourier coefficients for w, thelr BRa -
tion is not identical with Fguation [42] of the present analysis.
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o 4 [‘]"_“'al)} ('51‘1"2)+4.Y31¢1(3-4¢1)+1\} "
T Y , [43}
k[lﬂj,_-(l—al)J \—~¢—l--2)+4ya1¢1+1 J
. ) / :
h?‘)ti1 ’ ”A
where v is (2-v)n_ and me 5 has been replaced by —3 - Equa-
12R“{1 - v™) 4p

Pe R]Z_ 7% 1
E \h; ~° [44]
8262 3(1-v) 1o Xea W3 -2 4 d4ya. o, +1 1
! 1 \ TN 2 .\ IJ\ ¢1 , J 11’1 J
Pc ,‘R‘.z
where p_ is the critical buckling pressure. The quantity — =) s
v e E \h/

thus represented as a function of § only, as ¢, assumes its critical value
defined in terms of B by Equation [43]. Since this equation cannot be

solved explicitly for ¢, , a system of plotting was used to obtain as a
P y 1 y p g 1

nL
graphical function of B, shown in Figure 7. "A plot of -"—Pf- versus f#,

xl
1’:";!’:'{‘1

?' = Pz
0%, : 32325 - <]
\ | 2%t
oz, 175 - ! pd
) ||, P71
5 \ . V &~ Eeuation (431
e 125 pa /]
; N : I 4
o4 Ql__. \\ 100 (hepmenetrie
oz.“"""'""‘.ﬁ ‘l‘uctlin' NG - ‘ a8 /m?/
ki 7 TN | /
ot~ : [ @/
o OB mehting
] N B
0 3 r 3 5 7 ] y 10 0 1 z 3 4 A € 7 R 10
Figure 7 - $¢; as a Function of B 4 Figure 8 - n as a Function of £
for Simple Support (v = 0.3) for Simple Support (v = 0.3)
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obtained directly from Figure 7, is shown in Figure 8 together with a com-
parable curve obtained from Windenburg's Equation [24]% of Reference
29, based on the Von Mises solution. it should be noted that according to
Equation [43], the condition for axisymmetric buckling (¢ =1, 5v n = 0)
oceurs where the value of § is approximately LLRO7, In cases where b is
less than 1.807, Equation [43] has no physical gignificance, n being zero
for all such cases. The plot of Equation [43] in Figure 8 shows that as B
is reduced, n does not increase indefinitely. KEvidently, it attains some
limiting value after which it decreases until the axisyrnmetric condition
ia reached.

With appropriate values of ¢, determined from Figure 7, a plot of
Equation [44] was obtained and is shown as the solid curve of Figure 9

= = P
: \C Eweinr (44)| ° e
19; X 1 wiedashusa 4 i
,”l 2‘ t
\

o8 Y

N )

e L[N
" Y
\
' ue 2 S\
Ailnymengtely o \ \
opl__ Btligtnsch N
oa tvesioginn) |\
s e
o I Y
02 . =8
i T
ol
o ' v ] Y j L . e [ 1
Figure 9 - Buckling Pressnre as a Function of # for
Simple Support (v = 0.3)
* nL{

= 0.770N B

T

i
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where —é« (%) ig plotted ae 2 function of §. Also shown iz a curve for

arxisymmetric buckling represcnting the well-known equation

Pe R { 213 nz'
= R S 1 S L 451
( ; } . \a + Z } { 1

for < 7. This equation is readily obtained from Equation [42] it n is
set cqual to zero and is the gsame as that for the buckling of a cylinder
under end thrust®® where the length of a full longitudinal wave is equal to
2Lg. It will be seen that the two curves intersect at the point g = 1.807,
P fR\2 . . . .

_E_(K') = -1.315. Since Equation [45] is not applicable for g >1.807, the
curve is shown dashed in that region. Similarly, the curve of Equation
[44] is shown dashed where P <1.807. Figure 9 also includes a plot of
the familiar oquarioﬁ of “Jindrenburﬂzq {shown dotted), often referred to as

"EMB Formula [10]."- This is-an approximate representation:of-the:Von.

Mises solution {(see carlier footnote) in minimized form whic‘m in the ter-

- minology of this report, can be expressed by *

" ?

e s 190 |

E\h) T RI0EITS

This equation and all three curves of Figure 9 are hasod on a vaiue of v of
0.3. Equation [46] i more conservative than Equation [44] in the low-§
end of the asymmaetric-buckling range because, as was pointed out in a
previous footnote, the Von Mises analysis neglects the effect of boundary
conditions on the initial {prebuckling) deformations.

It should be mentioned that the '"beam-column' effect represented by

the factor p/pm appearing in a, was found to have a negligible influence

*The formula is better known in its original form:

2.60 (—‘3--)5/2

o e ZR
c L 0. 5[_13')1/2
R \?
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against a.ny deformations, the boundary conditions are

% e ——

on the curves of Figures 7, 8, and Y. The apnroximate form of Kquation
[40] ie, therefore, sufficiently accurate, and was usad in the construction

of the curves.

RINGS OF INFINITE RIGIDITY (CLAMPED SUPPORT CONDITIONS)

Avnother special case of some 1nter>8L 18 that of a sholl having .afi-
nitely rigid rings. Ag indicated previously, a solufion {nv this case cannot
be obtained from the equaticns for finite ringe by letting the frame vigidi-
tiea become infinite. Thie is becauge the use of the stress function approx-
imation has imposed certain constraints upon u and v which can give rise
to serious errors when the frame parameters become very large. It is
preferable instead to proceed from the more general Equation | 5], allow-
ing full variability of u and v {consistent with the boundary conditions) as
weill as of w. OSince the sheii is now fuily cilamped at reguiar intervais
*

- N

w=w=v=wx=u9-0‘ at an,Lf
A ' It - r] . 1 s Y . L L N - . — Al -
R cem ewemedmn s owowe el WWINRAIVIOII VIR W I T i‘j!i’ﬁE [ %+ 420
_ - 1
n=n,=
am
= =00

2(coshﬂ-cogﬁ) . .
= - — , if pressure termn in a__ can be
B\ sinhp+ sinp neglected "

The effect of imposing the conditions of Equation [47] is to couse all
frame integrals in Equation [5] to vanish. It it is assumed as before that
the bending energy AU, involving the initial deflections can be neglected,

Equation [5] becomaeas

Lo . . . - .
“These conditions permit axisymnmetric translation at the boundaries.

37




AUT = uﬂ.&__ j
?ll u"\

f\

2 R Z
21.. p2w w+ v W+t v, F1ouh ? u
PR (D) e CE) (B e ) oo

i 2
ZL ’aﬂ' W TV
+ mﬁ}’ j i [RZ $2H+ (——-—-——BQR 0 ) +2vw  (wggtvy)
A4R(1~- V ,

. z 7 7 V V N
u Wat v, 2 u
- 2. .2 0 3] 6
tuy fvgtw +v(R2).+v --»R—-) -(1-v)vy (vx+ -ﬁ-)]}dxde

[48]

RZ 2L, rlm 2w+ v 2. 2
P I f! [____+ ( ._e_)-{-}y—-.rz_‘i.-l-ux] dx 46
R R

It will be assumed that the buckling displacements can be represented by

Equation [10]:

A, m ¥y
u = cos nd E W, cos( }
. f' . (”-m") |
v = sin nh vim 8in \= [10]

m=]

i (2m*
w = cos nb . w 8in -~-_.....-)
d m ?‘ R

=i
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Before proceeding with the integration, 2 faw assumpticns can be made

which simplify the results, congiderably, These are as follows:

Wi > v

iw YE " g .
f W rBG A f u;j 4 , }' Rug v, an
G "0 0

27 27 L7 upV
2 4¢ - 4 ]
I wxdﬁ > f vxde ,I Y a6

[49]

o
2
o

2 2
J- we de S>> j vz de
(4]

The basis for these conditions is the assumption that the relative orders
of magnitude of v, Vp,, and w,, can be estimated from the results of
the stress function approximation {Equations [12]). The aﬁsumptions in
. Equation [49] ars consist 3 ) B -
thi-ough [27], n.nd are ba.ud on the fact that unity is negligible compa.red
with n? and )t for short shella. If the' emall quantities in Equation [49]
are neglected, ‘Equation [48] is reduced to
1%
) ]dxds_

oon - 2 [0 [ ) e () (5 3

PO

2(1-v2)
)
+ I [ xx"' e +2Zvw xx Woo T 2{1~ v)wxe]dxde
Z4R(l v”‘) R
2 '/
b dm L by wl | et Wl
zu v?) 4y LR L Re R? '
- W+'Ve WO Ug
+ Wy [ZVWX( " )+2uxwx+ {1-v) —— ( vyt -ET)] dxde
Y 2L.. p27 " o aw i v b4
- PR { ! [ [g” + o, i~-~-»~w—-m9~) + ¥y uK} dzx 4o [501
20 Jy [ R Q2 x|
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When the series expressions, Equations [6] and [10], are substituted

into Equation [50] and the integrations are performed, the result is

R e SRR

2 = {
RA{lav®) 1 2.2 2
; E}\"TL;“ T =% }. lnmkm- dvu A (W +nvm;+( 5 )(v A = )
ms=i
D wh 343
+ (nv, +tw, ) ] A LR Y Yim Am
: 2 ot 2
24R m=1 4"rn
-V 2 2 m
+.‘£'L_2__). [wm(n +-2-—-l)+)\ u, (2w +nv, )]

hd Uil ) ‘ on l - \YTER-IY
T3 “”4.,4:« VAT B ™ 26-p) T

+ [(Mf ).j) aﬁm)*("i Moy o 1[2vAywyav+wyi

L Y I T S 1 \11 fev

where, for convenience, the equation has been divided by ( 2.)
1-v®)R

The boundaty conditions (Equation [47]) on w and v are automatically
satisfied by Equations [10]; the conditions on w, and uy require

M
<1
3
e,
{
;

[52]
[a] a4}
w“’ih“ﬂ = Wq m l,rm = 0
P — £ M
m=1 m=

or




[RURE NP N e B aard i

b
o5
!

H]
™M
N3

3

=1 -1

© 3 [53]
2, %2m *2m = 2, “am-1"2m-1 = ©
m=) m=1

Thus summations of the odd and the even terms must vanish separately.
The problem now is to arrive at a stationary value of the change in
total potential, Equation [5] ],-while at the same time satisfying the four
conditions of constraint, Equation [53]. This can be done through the
use of the Lagrange multiplier method which requires that the expression

[)

T'=MAT.—.'Q

- EhnlLg Y i Yrm-1 " ¥ o T2m-1 Arm-1
. m=1
e B —n - DU . T ) 5 it i S
+ ag 2 , Uom + g 2 ; Vam?2m
m=] m=1 -

be stationary, where the a's are the unknown multipliers. The require-
‘ment gives rise to the squations

au' _ eu' _ U _
GUJ B 8Vj " Bwi =0 [5=]

which can be written explicitly =8 follows: *

oy o
AJu + By, +CwJ+ E €55 W, +—-}~[1-( 1)J]+~.~—[l+( l)J] = 0
izl
[56]

The guantitier designated by A B. i Cj, etc., should not be confuged
with other quantities appearing 4~drhm in this report which bear the sane
noetation.
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w
Byuj + Dyvy + Eywy+ D ejyw; = 0
i=1
o, @ Y“’q
C‘j y + Ej vy + Fjwj + 2 cijui + eij vy + fij Wi
i:l i=1 i=1

L) jv. %4 j -
+Aj -5-[1-(-1)]+'-2—[1+('1) ]} =0

where

.
sz+%—(l~V)

.
L1}

.
g )

Bj—

AJ fv - Pl - VZ”

Ej = n )
Fj = 14220 (n% + AE)% 4 (1-v2) [n? '+—él-1]
12R ‘

e et CPCYER VICCEUREIY

2]
e
perss
"

rags O - A v+ 21}

_v@-v)_ f 2y - -
o = MT“‘““W\_""%(HJ)W + A [2vndy - n(1-v))]
a"é’(l-.])l,(ll J\J)[?vnkl{ n(l-v) i ]}
f.. = M n rnz'(] -'V'Z)f}ll Y J
ij 2 wt -l k) z{i-§)

-

[56]

continued

- , v . v 2.
+ Vla’—é(j-{»j)“‘i + lj) - ’a-f:,ﬁ—j}("‘i A.j) j}
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it will be seen that onca again the coupling conditions on the odd and the
even modes are in effect because of the coefficients multiplying the a's
and the definition of a_ . Thus Equation [56] represents two systems of
equations corresponding to all odd and all even values of j and i, As be-
fore, only the odd~valued gsysiem is of praciical interest. If j and i are

given an upper limit J, the complete set"of equations for this system is

J
Ajuj+ BjVj"'Cjo"’ Cji
i=1

Wi+al = 0

R
U Vo ' \ .s , =
BJuJ+DJva EJwJ-i- E elel 0
-1

Ciu;+E,v, + Fi“’j"’ S (c:ii “i+°‘iivi+ fiiwi) + azhj = 0
C F A v o v o 4

1=

i,j=1,3,5.....J

the last two equations representing the two constiraints, There are thue
2+ ﬂ-g—"'—ll equations and, including a; and @, 2+ﬂi;-'—ll unknowns.

The system can be soived in the same manner as Equation [32]. How-
ever, it is highly complicated; moreover, because €5 and e;; are not
generally invariant when i and j are interchanged, the matrix of the co-
efficients is not symimetric.

This sitnation can be greatly simplified if, ag in the cage of Equa-
tion [34], we neglect all €
Further simplifications can also be made by neglecting the small quantity

eji’ and fji for which j and | are unequal,

Pl -~ vz) appearing in the coefficients 'B'i and Cj-‘ and -1 in the second

term of Fy. Equations 157] then reduce to




B e 1T

ot

where

AJ“J + ij] + Cjo + al = 0

Bj“j+Djvj+§jwj = U

CJ“J + Eij +Fjo+ az)\j = 0

j=1,3,5.....1

/

{58]

vy = -VA.j'f'lP‘ 5 )11 a)\j[n (1- v)-ZA;j
= (1=v)a2 ., 42

Dy = (152)2f +
Ej =n - ¢(2 V)nmajAJn(l-:iv)

2 32
F; = l+--—-(n +A") PTTR Y A |
Y 12R* ( 2)

+4"‘*‘""“') Y™ [n® (l-vz)(a - 1) + &vu.‘}AJZ]

The equations can be soived in a manner similar to that followed
in the solution of Equations [35], From the first thres eguations, v,

3
ig eliminated and ithe expressions

44




=2 = \ = =
Q’l(Ej-l'ij) G’ZI\.j(CjD‘i"B'L')

. = i3 -
j G G;
- - 2
a, (CiD; - B:E:)  a,).(B%-A.D,)
wj - 1 ) J ) + 27 ’3 J 3 {59}
Gj Gy
— - — — .-' P p— 2
; Gj = Cj(BE; - CiDi + B (B;C; - AjEg) + Fy(AD; - BY) £ 0

are obtained. When thege are substituted into the last two of Equations
[68] and &, and a, are eliminated, the resulting buckling equation is

]
Q

J G .72 J 222 . AT J 52 o=
Z'*j‘chJ'BjEj’ i Z Xj (By - A;Dy) Z Ef - nyF; |
Gj Gj‘ :Gj

§=1

j=

i= i

By neglecting the small terms involving ¢ , the complexity of the expres-~
sions is greatly reduced, and after some rearrangement, the equation

l - takanr tha form
o J 2 3 - 3
. " Z f;i - 2 .s_j 2 5 =0 [61]
ﬁ in which
% 2'\4’ 4 e 1 2 -
g h A.j\l+kj) ) )‘Zl\l-i-e(j) . [2 4
%L‘ Qj = . l-vz\ 5 t;} J ) — { j - y(l “aj)] + 1} + Yy kJ a-jJ + 1
E,FX?:‘ X Aa BN ‘ ’ Toun
=
%,i R__] = }':j -V
o a2 2
o Oj - )\j (1 + RJ)
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l.

2 2K,
Ty = L+ 2o ad sk ( —1)
A% 12r? Y

-

g % ', '5-!'3 Ll as
+ hl} {[kj‘z-v) + ‘](——é—-'i'kj)(l'*'\l) 4 yaji-‘\\j(-**z-“) o k‘j (.!.“‘ :-) +ZV‘}‘}

The solution of Equation [61] can be accoinplished graphically with the
same procedure described for Equation [ 39]. Once again the lowest root
ghould occur between the first two asymptotes where Q; and Q3 vanish.
The accuracy of the result will depend, as before, on the size of J.

NUMERICAL EXAMPLE

chined cylinder BR-4B having external rucungular stiffeners and which
is considered in the gection on experimental work. Its dimensions in
inches are as follows:

R = 8.048
h = 0.08)
L¢ = 4.266
d (frame depth) = 0.570
b {irame width) = 0,138
p = 6.80

g

The value of B {6 _80) iz considerably largey than that usually encountered

n pregsure-vessel design.

Rings of Finite Rigidity

Az a preliminary to the calculations, Table ) shows the firat 11 co-
efficients {3, ) of the initizl deflections {w and 1) as calculatod by Equa-
tion [8]; m is written with the absolute value rign since both pesitive and

pepgative values arve permitied. Despite the relatively Jarge value of p,
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nhie ] : Tabhle 2

Maztri Solutmns for Cylm
B‘(_)‘ 1122 writh an.+c Rimera
. 'y ‘---b-
¢
vy a, ; . Buckling Pressure, psi
jm| - J
Matrix Lpproxim: .e
- - Equation {33]] Equation | 39]
0 1. 00000 1 693, 1% 653%%
i 0. 84590 3 657.1 668
2 0.25538 5 646.3 654
3 0.06345 7 641.4 648
4 0.02099 9 638.7 645
5 G.00870 11 .636.9 642
3 0. 00422 13 635.7 *Calculations
? 0.00228 151 634.8 performed on
IBM-7090
8 0.00134 17 634.1 computer
9 0. 00084 19| 633.5  [*Slide ruie
10 0. 00055 21 633. 1 caiculations
11 0. 00037 Pressures for n=11, 6
E=28.9 x 107 psi

the convergence cof Z a,, is quite rapid. For purposes of caicula-
ms -
ion, only the first four or five values are significant. A3 poeviovsly inm

cated, the convergence will’ be more rapid for smaller values of 8.

It is of gsome interest to compare results of the matrix solution,
Equaticn [33], and the simplified solution, Equation {39]. The ¢ritical
buckling mode for both equations was found to be 11.*¥ Table 2 show
the buckiing pressures according to these two solutiong for succeszive
values of J. Since Equation 133] was solved using an IBM-7090 com-
puter, results were readily cbtainable for large values of J {an arbi-

trary limit of 21 was imposed}. Solutions of Equation [39] were obtzined

Belore the calculations were begun, a preliminary estimate of the critli-
cal value of n was obtained from Figure 8 for the case of simple support.
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by slide rule up to J = 11; it did

4
(

not appear worthwhile to continue
iylindor BR-~3 8
T o 289010300
| a il

8

beyond this.

e s
2o

o

3
%
I’—

The information in Table 2 is

also showsn graphically in ¥igure 10.

It is evident that the convergence of X5 Rorasinate

N\, . Eastionton
N

Rariz /‘\1

both solutions is fairlv rapid so that

little accuracy is gained in proceed-

Criticet  Paciiing  Prommev, pel

§ 8 8 8 3 8 3

ing beyord, say, J=7. Such s con-

clusion, however, cannot be stated

generally. If the frames had been

larger, the solutions would probably

...
~
L)
-
=
-
]
&
-
3
3
o

have converged more slowly. For :
Figure 10 - Variation in Approximate
. - and Ma.trlx Solutions with J
Equation [39] is a reasonably ac- for Cyhnder BR-4B

this example it a.lao appears that

curate approximation to Equatlon

[331.*% Furthermore, since the accuracy of the approximation depends

only on the rapidity of convergence of Z ap, » one should expect closer

= =00
agreement for smaller values of B.

Equation [33] also permits the determination of the relative ampli-

tudes w; of the buckling modes. Table 3 lists the ratios wj/w1 for n=11

and J=21. It will be noted that the components are of successively de-

creasing magnitude and the first

7
all the rest. The rotatiorn of 2 frame w; XIIR produced bv the first com-

Ko
ger 2ngd cf oppoaite ei-n from

e mvieh law
NUECH Al o

Air Sidlae

ponent is thus partially reduced by the sum of the succeeding componerds.

Simple Support Conditions

Results of calculations for Cylinder BR-4B {g= 6. 80} with simple
supperts replacing the ringe are given in Table 4. The pressure and mode

obtained from the minimized curves cf'Figures 8 and 9, representing Equa-

*Since Mquation [ 39] does not contain the approximation in the linear
cane, the zesults of both equations should be identical for J'= 1.
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Equation {42]. Corresponding resulis for the Von Mises solution, also

obtained from Figures 8 and 9, show a slightly higher pressure and dif~

ferent meode. This difference reflects the influence of the boundary con-
ditions on the iaitial deforimations. Although ior ihis case, the inclusion
of this affect gives rise to a lowar presgpeuve, Figure 9 shows that the

pressures will be higher fov < 4,55,

Rings of Infinite Rigidity

Uging Equation [61], it sficuld be possible to approach an closely
ag desgired the exact solution to the problem of fixed support, consjistent
with the approximations made in the derivation of the equation. It may .
be surpriecing, then, to consider the results of calculations for Cylinder
BR-4B given in Table 5, Equation [61], carried out to the eleventh degree

Relative Amplitudes of Buckling Buckling Pressures for Cylinder
Modes for Cylindar BR-4B BR-4B with Simple Supports
with Finite Rings
L R A o . ¥ | ’ | - T - l
j Equa;ion [33] - o "ﬁ""_"
n=11 J=21 Eguation [42] 550 il
T aenan Minimized Form
1 1. 00000 (Figures 8 and 9) 551 11
3 - 0.06654
Minimized Von Mises
5 - 0.01962 Solution|™ 580 | 12
7 - 0.00773 {Figures 8 and 9)
9 - 0.00378
1§ - 0.00211 Shell length assumed to be
- center-to-center frame spacing
15 - 0.00085
17 ‘ - 0.00058
19 - §.00042
21 - 0. 00031

kil
a7



Table 5

Buckling Pressures for Cylinder BR-4B
with Infinitely Rigid Rings

Effect of Boundary
Conditions on Theory Fe n
Initinl Deafleciions i
e e L Rl Wk W fvar il st e 3Tt
Tazluded
] 1 ) i} . .
a,., = e imemremn Equation [61] 811 11
,. o 1+4(“;;’)“I} {J=21)
Neglacted Equation [6] ] 810 il
(J = 21)
{a,, = 0) ‘ .
™ Nash? 804 12

t-:

In all cases. shell length was taken to he the cente
to-center frame: spacing (Lg = 4.266 in.)

('J'= 21), gave a buckling pressure of 811 pai for n=11, while the far sim-
pler equation® of Nash?® gave 804 psi for n=12.  This latter equation is
alrnnat {daniinal wilth shnt ~talead Lo Moot oo 3 T It‘n S5 15 1s -,;uu-&
agreement with other more complicated solutions also obtained by Nash,16
The fundamental characteriatic of all of these solutions is that they are

based on the assumed buckling confignration

woE W {1 - cos(lgx)} {62]

RPN R RS W RN

. 4
Eh h? g, 3% 22 g

-2 e 4 22 T
R l12r%()-v?) 'z (4x2+n2)

2 (n -1)+x3

™

In all calculaiions, the distance beiween supports wag taken to be the
center-io-cenier frame spacing (Ly = 4.266 in.). Frequently, when fox~
mulas of this type 2re applied to ring-stiffened cylinders, the inner or
ungupporicd distance between frames ig uased.
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for example, to Equ:tion [62] ' would proba.bly result in more rapid con- '

Thia function will not, in general, satisfy the differential equations of
equilibrium. Rather it has been chosen somewhat arbitrarily because it
satisfies the boundary conditions and is conveniently used with the energy
method. When annlied to ring-ztiffsnsd cylindeis, ihe suluiions based on
this fanction have often predicizd pressures much higher than those ob-
narved experimentally. Consequenily, one natural conclusion ie that the
use of a diiferent function could lead to lower pressures. While the re-
gults in Table 5 are too limited to warraat a’'general conclusion, they in-
dicate that the configuration of Equation { 62] mav in fz2ct be neaxly correct
and that the difficulty actually lies in the assumption that fuil fixity can be
provided by rings of practical sise.

It is slso worth noting that the convargence of Equation [61] was
much zlower than for the otheyr two caases previously discussed, This was

J S
caused by the slow convergence of ot which necessitated carrying

uwu t!lnt me ﬁiﬂ(‘
o the boundary conditions for .
Br-iet of tancHenw,; similar,

vergence,

Table 5 alao showse that for the ceomstrv in anaation  +tha {wfluac~ -
S baew wessases y wAOLAMALWGIS UL LOE 1010141 dexlections had a negligible effect
on the collapse pressura. When this iniluence is neglected {a = 0), the
initia] deflections are those for an infinitely long cylinder, the condition
assumed by Nash, and the buckling pressure is 810 psi. That the pres-
sure (804 pai) given Ly the Nasgh aquation is lower than this can probably
be explained by the fact that the buckling configuration agsumed by Nash

does not completely satisfy the boundary conditions of Equation [47]. Be-
cause of certain approximatione arising from the use of a stress function

of the Donuall type, the circumferential buckling strain eg does not van-
ish at the boundaries.*

*E'oilowirﬁg the procedure indicated in Appendix ¥, Nash eliminates u
and v through the nse of 2 atress function. PBecause w for this case is
of the form of Eguation [62], the resulting stress function is
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In view of these results, it might be of interest to compare the buck-
ling configuration employed in the present analysis with that represented
by Equation [62] for this example on a quantitative basis. By suiiable re-
arrangement of Equations [58] through [61], an equation expressing the

relative magnitude of the corresponding dbuckling coefficients Wi is ob-

tained;
Wy 1(r1 - :
amat— = -— oo 63
where
J J
R SR S S T
rk=6'k- "Q'l“b‘i "QJ j.k=l.3’5noc-oJ
L e e e

Hiia, e 4

ERAS A %
F 5 o« me———w_ cos né cos
2,44 0
n +Az : .
in the notation of thia report, and thn ~irsnrmicranaria. wivom

1 08%F  volF
° * E\3.2 m2aa2
ax2 R%p0

T {Foptaote continued from preceding page).
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E

does not vanish at x = 0 and x = Lg. However, if Equations [122] of
Appendix E axe modified so that

L

ey
R?pg2

i

Oy + £(0)

ey
On = ——— 1 glg)
0 8x2

. _9%F
R 9x 88

"

Tx0

it is then posasible to satiafy the condition on ¢y by proper adjustment of
the functions £(0) and g(0). The resulting buckling pressure iz slightly
higher than that given by Nash.
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and all quantitine retain the definitions of Equation [61]. An equivalent
of IEquation [ 63] can be obtained for the buckling configuration of Nash
by ¢xpanding the function™

/ J\.zx\
woll-coa —_f{_) 0= x sL¢

£
!

[ 64]

€
It

Azx )
-wofl-cos --E-) LfSXS 2Lf

in 2 Fourisr ceries. The result is

low, .
Wj=--—'—z—-— j'-"~'1,3,5...J
7j(j= - 4)

In order to compare these relult:, calculations were carried out

" with the aid of T-“naatien [53] £o7 the numerical example where l.m =¢,

J =21, and p, = 810 pei. The results appear in Table 6 in the form of
“’j/‘”l' together with the corresponding values from Equation [65]. Ratios

bavond i = 11 warae not calculated. ™t will ha saan that thare ia conaider.

able ditterence in the individual coefficients, Apparently their total effect
is such that the difference in buckling pressures is insignificant,

SUMMARY AND CONCLUSIONS

1. Awn-analysis for the elastic buckling of ring-supported cylindrical
shells has been develuped which coneiders the infiuence of the rings on
deformations before and during buckling.

Z. The bending streases associated with the prebuckling deforma-

tions have a negligible effect on the theoretical buckling strength.

*The function in Equation [ 64] is periodic in the interval 0 = x € 2Ly
while Equation [62] repeate itself in each bay. However, their corres-
ponding buckling pressures are identical.
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Table 6

Comparison of Buckling Configurations for Cylinder
BR-4B with Infinitely Rigid Rings

wj/wl

) Equation | 63} * Fquation [ 65}

(Nash3®}
—a T —— -
1 1.0000 1.0000
3 -0.1492 .-0.2000
5 «(, 0387 -0,0286
7 -0.0173 -0, 0098
9 -0.0085 -0, 0045
11 -0, 0047 -0,3023
*a,,=0; J=21; n=11; p. = 810 psi,

3. The buckling equstion- for a shell wi.th {inite rings represented by . -
“the #tability determinant, Equation [33], can be upproximated with good

accuracy by the single Equation [ 39].

4, A special result of the general analysis is the buckling equation
for a mshell with simple zupports. This differs {from the buckling equation
of Von Mises since it accounts for the effect of the boundary conditions on
the prebuckling deformations.

5. Anothe~ special case is that for a shell with fully fixed edges. It

appears possible from mumerical results that the use of the simplified

1-cosn ?i& to represent the longitudinal buckling profile may be a

f
reasonable approximation for this casge.

form

6. The energy approach has been used fo obtain the trigonometric
series eguivalent of the solution of Pulos and Salerno for the initial axi-
symmetric deformations of 2 ring-stiffened cylinder. This form has cer-
tain mathematical advantages, particularly when employed in the solution

of buckling problems,
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PART II - EXPERIMENT

EARLIER TESTS

Following the early work of Windenburg,?? later experimental studies
at the Model Basin were directed toward the evaluation of classical buck-
ling theory for shor}j shells. Tests of ring-stiffened cylinders, designated
BR-1% and BR~5“, which were fabricated from steel plate by welding and
not stress relieving, resulted in collapse pressures well below_thedretii-
cal expectations. It was sugpected that these discrepancies could be at-
tributed tc weakening eifects of imperfect circularity and residual rolling
and welding stresses. To investigate this suspicicn further, two additional
cylindefs, BR-4%¢ and BR-4A%", were fested. These were identical in
geometry and in material properties, but BR-4 was rolied and weided

while BR-4A was machined from a stress-relieved thick cylin&er. The

twilerion o TAth ‘a-1-nmnc wrawe nabsotin with Tahao
vainIlEg.e arUuan AT WD 1NCAaTviY wWival aUOC S

appearing between stiffeners. However, BR-4 collapsed at 390 psi where-
 as BR-4A collapsed at 550 psi. " _
With the weakening effects of imperfections so clearly demonstrated,
it was evident that further attempts to obtain elastic buckling data with im-
perfect, fabricated cylinders would be fruitless. A better alternative ap-
peared to be the study of machined and ihifiélly stress-free cylinders.
This approach had already provén sﬁccessful in experimental studies of
eneral instability 456  Accordingly, a third test cylinder, designated
BR-4B, was manufactured Geomotr:cally, th1s was a smaller scale ver-
sion of BR-4 and BR~4A but it was machmed from tubmg of hzgher yield:
strength.” Wlth this combmatmn of properues; 1t wa.s expected that col-

lapse would. be initiated by elastlc buckhng

(ﬂ

DESCRIPTION OF TEST CYLINDER S

BR-4B, whose dimensions were ’givléun as a numerical example ear-
lier in this report, was a 6/10-scale model of BR-4A. As shown in Fig-
ure 11, it consisted of four central full-length bays and a short bay lat
each end terminated by a heavy bulkhead ring. One ring had evenly spaced
holes to accept bolt;s for a flat closure head. The four-bay.arrangement
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cylinder was machined from a thick,

forged-steel tube which had been part
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1 5 g of a gun barrel liner. Compression
§ ; IE teats cf specimens taken from the
tube prior to machining indicated a
( r)“’}[:'"“lr“‘" j" ri.“ o ‘;1)_[:"'1—_: yield strenpgth of B2,500 psi {basged
on an offaet gtrain of 0,002} com-
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! S o to be 74,400 psi. Since the elastic
PR Tysioat Frame buckling strengih of the cylinder
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would be directly proportional to the
Figure 11 - Test Cylinder Bi-4B modulus of elasticity of the material,
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pose, a ring apecimen was taken from one of the bulkhead ﬂngs 'at
clusion of the tests. Measurements of the deflections of the ring under
diametral point loading were used to establish a moudulus of 28.9 x 106 psi.
This procedure is described in Appendix F.

PRELIMINARY TEST

One of the objectives of the investigation was to determine whether
any region in the area of failure had been stressed beyond the elastic limit
prior to collapae. Ideally this would indicate extensive sirain-gage inatru-
mentation of this critical area, but to lecate such an area prior to testing
is an impossibility. On the other hand, it was not practical to provide eacl:
bay with auch extensive strain-gage instrumentation that adequate coverage
of any area would be insured. Consequently, it was decided that a prelim.
inary teat should be carried out in an effort to determine in which bay buck-
ling would initiate. If this could be accomplished, the critical bay would
ther be liberally instrumented and 2 second test carried out in which the

cylinder would be taken to collapse. An additional posaibility was that



N pARR

. > Y s,
T TV PRI § A E Ty AR SIS NI T T M PR | R e

P

v

nonlincar elasiic strains would appecar during the preliminary tests, and
would be of such a magnitude that the buckling pressure could be predeter-
mined by means of the Southwell method. This procedure had been used
with considerable success in tests of cylinders collapsing by general in-
stability,*® but as yet had not been tried in the casec of shell instability.
Since nonlinear strains were not observed in the test of BR-4A, it was not
sxpected that they would appear at pressures below 540 psi, the highest
pressure at which etrains were measurad during that test,

The exterior of the cylinder war instrumented with electrical resis-
tance strain gages located civcumferentially at intervais of 10 deg in the
middie of each of the four typical bays and extending completely around
the circumference. Temperature compensation was provided by "dummy"
gages. The test chamber was a 2500-pei pressure tank, 20 in. in diame-
ter, and ¢il was used as the pressurizing fluid. Prior to the actual test,
the cylinder was immersed in the tank in a free-flooding condition. The
pressure was then raised in increments to 500 psi and strains measured

to detect gages that were undelirably "pressure senaitive " Thosge wlnch

* éxhibifed a sensitivity of § iin. /in. or more for 100 psi were ‘conwidered

unsatisfactory. These gages were then checked by ovbserving the strain
induced when local pressure was applied to the gage. It was found that
this procedure was an adequate substitute for the pressurizing method,
and it was used subsequently a8 gages were succeasively replaced and
checked until all were satisfactory,

The cylinder was then placed in the tank with one end closed by a
flar, c¢ircular plate and the other sealed against the tank top, which had
an opening to permit access to the interior of the cylinder. While straine
were read with automatic strain recorders, the pressure was applied in
small increments up 1o 570 pai. All strains were still linsar at this prea-
sure, and it appeared that procecding to & higher pressure would only in-
creade the risk that the cylinder would collapse hefors morve extensive in-
gtrumentation could be inatalled, The pressure wag, therefore, reduced
in increments back to zevo,

It was apparent from the strain plots that no yielding had taken place.
The largest apparent permanent set for all cperating gages was 45 pin. /in.

which was considered insigmiicant in a3 total strain of 1500 to 1800 pin. /in.
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Table 7

Circumferential Strain Sensitivities { Exterior)
at Midbay, Preliminary Test

Compressive Strain Sensitivity in
Bay mxcro:inchefﬂs per inch per psi
Average
Maximum Minimum of All
Gages
Zoo T e A e mmT'““ I
1 2.91 2.52 2.74
pA 2.96 2. 40 Z.83
3 3.15 2.72 2.97
4 3.12 2.79 2,92
Theory of Referance 33: Sensitivity = 3.03

and probably due to the overall effect of preasure sengitivity and drift in
the measuring system. The strain sensitivities in micro-inches per inch
per pound per aquare inch observed during the tests are summarized in
Table 7. The average sensitivity was highest (2. 97) in Bay 3 and next
highest (2, 9Z) in Bay 4. The maximum individual sensitivity was observed
at 90 deg in Bay 3. On the basis of these measurements, it appeared that
Bay 3 would be critical, but that Bay 4 would also deserve close attention.
Final instrumentation of the cylinder, carried out on the basis of these

ohservations, is described in the next section.

FINAL TEST
Instrumentation and Test Procedure

Gage locations for the final test ave shown in Figure 12. This time,
interior as well as exterior gages were installed, the total number being
limited to the capacity of the available automatic recocders. Mozt of ihe
gages were conceniratzd in Bays 3 and 4 with major emphasgiz on Bay 3.
The pairs of circumferential and longitudinal pages were sc arranged that

stresaes could be measured at the two locations {outside at midhay and
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Table 8 inside at a frame) where they are

Loading Schedule for Final Test normally nighest., The midbay ar-

rays of circumferential gages were
Pressures (psi) at which
Strains Were Measured located in the four typical bays for
First Run ' Se«:o-nd Run the purpose ot detecting iobe pai-
0 mwwrgﬁm terns should they appear prior io
50 580 100 620 collapse. These measaretnentg
100 590 2 0 630 would be utilized in determining
200 600 300 Failure the elastic buckling pressure by
300 410 400 (633) meane of the Southwell method.’®
400 570 500 377 The exterior circumiferential gages
500 500 540 | (Residual) located in Bay 3 along the 90-deg
520 360 560 gencrater were intended to give an
540 100 580 0 indication of the longitudinal pro-
560 9 600 file of a lobe in the event one ap-
peared. Since the highest strain

in the preliminary test was meas-

ured at 90 deg in Bay 3, this appeared to be & likely location for the devel-. ... .

opment of a lobe trough. (ages were alao mounted on the sides of Frame
4 to provide 3 measure of any twisting and bending that might take place
prior to collapse. All exterior gages were examined for pressure sensi-
tivity and replaced ln accordancs with the procedure followed for the pre-
liminary test.

Two pressure runs were made during the final test, as indicated in
Table 8. On the first run, a maximum preasure of 610 psi was attained.
During the second run, collapse occurred suddenly at 633 psi, the last
strain readings having been made at 630 psi, and the pressure immediate-

ly dropped to a residual value of 377 psi.
Regulis «and Discussion

Vieible damage to the cylinder, ag shown in Figure 13, was con-
fined to Bays 3 and 4 where a typical lobar pattern developed in thearen of
neavieat ingtrumentation. While the lobea did nol completely encircle
the civeumference, 3 close examination indicaied that 2 complete pattern

would have contained 11 lobes,
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Figure 13 . Views of Collapsed Cylindor BR-4B

e

During the first run, the strains were generally linear with pressure
up to about 590 psi. 'Small deviations from linearity appeared at 600 psi,
and became more noticeable when 610 psi was reached. On the unloading
portion of the run, the strain.pressure plots obtained during loading were
in most cases retraced. At the conclusion of the run, the maximum zero
shift was approximately 50 pin. /in., There appeared to be no correlation
in general between zero shifts and departures from linearity observed
during the pressure run. As in the preliminary run, the shifts can be
attributed to error in the measuring system rather than to a significant
vielding of the material.

On the ‘'second run, the deviations from linearity again appeared at
600 psi and grew with pressure until, at 630 p2i, a pronounced lobar pat-
tern was evident. Such patterns have often been observed in stiffened cyl-
inders prior to collapse by general instability.”® They are produced by
initial imperfections which, even though minute in machined cylinders,
have a decided eftect near the point of buckling. Iigure 14 shows some

examples of tha strain preesgure plots for hoth rans. The circumfereutial

6l



To0 T T T, ]
Cailupos at 833 I/ " L l,
b e e o [ s ¢
" .{k prgi
" 800 — >l
s ol P
K 20 _{// '
£ P ///-
§ 300 |- _*_hno’)(ﬂ-“ﬂ 4 1100*
vl ] 9 Lowey
L o - - a
) ® iscting ~ Ren 2
P4 A
100 —— id
| Fuy 3 [

o
omswmmmmmmm
ommmmmmmm-ﬂwm

Clrcumtarentiol Biroin o Widvey i Infin

m e — ——
~®0 gol..*
Tl 800 Pad
2 A00 —
L
- /
lm
. _ - o Lewkes -1,
SN £t & Unewany [P0 Y
o Losty -Pu 2
|
e F
. o by
00 00 400 0 600 100N O MO0 MO0 0D
0 200 400 400 A0

0 000 HO0 MOG MO0 W00 XD W0
Clrounforantinl  Sirmin o Widboy I p W/

Figure 14 - Typical Plots of Circumferential Strains
at Midbay versus Pressure (Final Teat)

lobar strain patterns in Bays 3 and 4 at 630 psi are shown in Figure 15,
For contrast, the satraine at 500 psi are also shown. It will be seen that
the patierns in the two bays are staggered, just as are the final deforma-
tions in Figure 13, Although the strain patterns are not complete because
of a few gage failures, close inspection of both patterns indicates the ex-
istence of 1] lobes. Jt can also be aeen that, as anticipated, a lobe trough
developead at or near the 90-deg penerator of Bay 3.

From atrain data of the type showa in Figure 14, it was peasible to
obtain Southwell plots of fairly good quality, Plots for the gages of Figure

14 appear in Figuace 16, With this raethod, the nonlinear compenent (e¥)

62



.-

N

g 3
<>-
~—e
.
=]
]
ol
1
7
>»
»

i
)

[T TF

4

L
s
.
]
g
8
3
§
g
§

Ial, e
1 |

Extorgr  Ciropatarpnial  3osia o Nedhe: » roTRRCat par nCh
3

I 3
1
<§’

Figure 15 - Circumferential Strain Patterns
(Run 2, Final Test)

of the total strain is determined and plotted against the ratio -;-;— .t The
elastic buckling pressure is then obtained from the slope of the resulting
straight line plot. This was done for a number of midbay circumferential
gages located externally in Bays 3 and 4. The gages were selected on the
basis of data quality from .hose showing the largest deviations from line-
arity. Table 9 gives a summary of these results. It can be seen that the
pressures are all in good agreement. Furthermore, the average buckling

pressure of 637 psi in very close to the experimental collapse pressure

tSince €* is positive or negative depending on the gage orientation,

*
=*l and Ff)—' were used in Figure 16 so that all points would lie in the

first quadrant.
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e e Ko e of data quality from those
_ g showing largest nonlinear
Figure 16 ~ Typical Southwell Plots strains,

for Exterior Circumferential
Strains at Midbay
(Run 2, Final Test)

of 633 psi.* However, it should be noted that accurate data could he ob-
tained only at pressures within 95 percent of collapse.
These resuits ure of some interest as they relate to the problem of

”snai;—through” in thin cylindrical shelis. The Southwell method is based

* In practice the Southwell method, when applicable, predicts a buckling
load slightly bigher than that actually attained. This is to be expected
since the msthod gives the elastic buckling lead for a geometrically per-
fect atructure.
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Table 10

Maximum Stresses Measured during Final Run

oo £90 mzi)
{Bay 4 at 110 deg, 630 psi)

appeRAl L e ey

: Strees in psi

o Pulosa-
= Stress

& x/L Orientation Measured §a1erno
% _ Theory
g 1,000 Long. Interior - 72,900
3 0.943% Long. Interior 52, 100 47,500
0.500 Circ. Fxterior 74, 100 64, 800

Elastic Limit = 74, 400 psi

*Longitudinal gage located as close to frame as possible.

on small deflection theory and pradicts the buckling load for the geomei=

ricall ' pe t'ec.t ntructure. H nce, it ahould not gwe accurat results for

the baais of large deflection theory. In such cases, "snap-through" occurs

at some load less than the load predicted by small deflection theory. The
Southwell results, therefore, indicate that if ""snap-through'' tock place, it
did not significantly affect the buckling strength, :

It is alsao apparent that the failure, if not initially olastic, was so
nearly so that the collapse pressure waz not seriously affected by inelas-
tic behavior. Had this not been the case, the Scuthwell plots would have
been nonlinear and the elastic buckling nrressure, though possibly obtain-

able from strains in the elastic region, would not have agresd well with
the experimental collapse pressure.

In this regard, it is ureful to examine the stressesg determinad from
gtraing measured in ciitical arsas. The maximum stresses were chserved
in Bay 4 at 110 deg and are listed in Table 10 along with the corvesponding

values from the theory of Pulos and Salerno.’® All stresses are for a pres-

Foong
!‘—L
ﬁi’
x

S:é
-

5

gure of 630 psi. The differences between the measurements and the calcu-
lations can be atiributed tc additional bending stresses which accompanisd

the lobar deformationg, It will be saen that none of the measured si{regaes
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Figure 17 - Distribution of Figure 18 - Theoretical and
Nonlinear Circumferential Experimental Distribution
Strain for Bay 3 at 630 psi of Linear Strain for Bay 3
along 90-deg Generator (Run 2, Final Test)

reached the elastic limit, However, it should be pointed out fhat the in-
terior longitudinal stress axactly at the juncture of frame and shell could
not be measured hecause the longitudinal gages were necessariiy displaced
slightly (0.057L) from the junctura to allow for the length of a gage cle-
ment. The maximum siress measured at this neighhoring nnint and the
theoretical values for this region (Table 10) indicate that the elaatic limit
niay have been exceeded by the interior longitudinal atress in Bay 4 at 110
deg immediarely adjacent Lo Frame 5. Becauae of the high atress gradi-
ent in this region, & precige astimate of this streas was not possible, In

any event, it appears that whatever yielding roay have occurred wag very
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slight and highiy localized.

The circumferential gages in Bay 3, located along the 90-deg gener-
ator, provide some information regarding the longitudinal profile ¢f a lobe.
Figure 17 shows a nondimensional plot «¥/ i';ll versus x/Lg for a pres-
gure of b30 psi. As explained previously, «¥* is the nonlinear or lobar
component of the total strain, «¥ is the value of ¢* ai midbay, and x is
the distance measured from the center of Frame 3. Also shown is a sine~
wave distribution such as would exist in the case of simple support. The
departure of the s¥merimental points {rem this sine wave indicates to some
extent the influence of the rotational restraint on the buckling configura-
tion. Undoubtedly, experimental error is responsibie for somse of the
deviations. S8trains measured on Frame 4 in this region showed some
evidence of asymmetric deformations, but the strain variations were not
large enough for the determination of a well-defined pattern.

Strains mensured in Bay 3 also provided an opportunity for further
evaluation of the axisymmetric stress analysis of Pulos and Salerno® in
the linear range. Figure 18 compares the theoretical distribution with =
[remnlerential dnd ’imgituiimml' “strain sensitivities -
measured acruss Bay 3 at 90 deg. Agreement between theory and exper-
iment, it will be seen, was generally good.

COMFPARISON WITH FREVIOUS TESTS

Table 11 summarizes the test resalts of Cylinder BR-4B and the
eariier results for Cylinders BR-4 and BR-4A. The cylinders were geo-
metrically similar but differed in their yield strengths. The table in-
cludes pressures given by Formula [92A] of Von Sanden and Giinther,?
at which the exterior circumferential stress at midbay reaches the yield
value. Since this pressure for BR-4 and BR-4A wae legs than the elastic
buckling pressure given by Equation | 33}, it is clear that both of these
failures were initially inelastic. Use of much higher stxength steel in the
cage of BR-4B resulted in a yield pressure well above the elastic buck-
ling pressure and in a mode of collapee which appears to have been ini-

tially elagtic,
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Table 11

Experimental Results Cnmpare-d with Previous Tests

Cylinder Number BR-4 BR-4A BR-4B
Fabrication T Welded Machined Machined
oy psi® 50, 000 50, 000 82, 500
. Von Sanden
v and Giinther 494 494 815
-] Formula [92A]*
LRk s
gﬁ'ﬂ' Equation [ 33] 633(11)
Experiment 390(10) 550(10-11) 633(11)
*Based on an offset strain of 0.002.
"'"Number of lobes in parantheses.
Dimensions and Young's Modulus (28.9 x !0“ psl) ,
g gguied-identical for the three: wiindun.» s S8 e AR IR G L

SUMMARY AND CONCLUSIONS

1. The test Cylinder BR-4B collapsed at 633 psi in an asymmetric
shell buckling mode characterized by 11 circumferential lobes. On the
basis of strain: measurements, it is concluded that the collapse was

initiated by elastic buckling.

Z. The Southwell method can be an offective means of deterrnining

nondeatructively the elastic buckling strength of short shelis.

It is likely

to be accurate only where imperfections and residual stresses are small,

ag in the case of machined cylinders, and only where it is possible to ap-

proach very ciosely the elastic buckling pressure,

Hence, ite practical~

ity as a nondestructive technique may be rather limited for thig modc of

buckling.
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PART Ul - EVALUATION OF BUCKILING THEORY

COMPARISON OF THEORY WITH EXPERIMENT

According to the theory developed in this report (Equation [33]),
buckling for Cylinder BR-4B occurs at 633 psi in a configuration of 11
circumferential lobes, which is in exact agreement with the teat results,
Such agreement is, of course, better than one has any right to expect,
even for the most rigorous theory imaginable. The present theory makes
use of several approximations; moreover, its accuracy depends on the uni-
formity of the test cylinder and the accuracy with which its properties can
be determined. The shell thickness, for example, must necessarily be
represented by an average of many measurements, all subject to error,
The determination of Young's modulus required a separate test which uti- |
lized the response of a ring to diametral loading. While this method is
believed ~eliable, it is still subject to a:éperimenta.l error,’' and no claim
is made that it is the best that could have been unad Othar techniques
ure the re
a specimen under direct stresas, are highly regarded. Because perfect
isotropy ie nover achieved, methods which employ different conditions of
stress cannct be expected to yield identical results,

In viaw of these uncertainties, the degrese of correlation of theory
with experiment can be regarded with some susepicion, but the results are,
nevertheless, substantial evidence of the validity of the theory.

The taat of BR-4B is considered succesaful as a demonstration of
the phenomenon of elastic buckling, but it is no: 2an ideal example of the
influence of stiffening rings on shell buckling strength. The buckling pres-
sure was only slightly greater than that {600 pai¥) given by the theory of
Von Mises (Equation [46]) for the casze of aimple supports. ‘Thisis a

“This figure ia obtained on the basis that buckling is confined to the
unsupported length (L) cf shell plating, If the full frame Hu»acmg {(1g)
is used, the resulting presanre is 560 psi, as indicated in Table 4.
Still less is the preasore (550 psi) given by Equation [42], which in-
cludes the effect of the boundary (.Dﬂdltlﬂnd on the initisl deflections.
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,terior circumferenual stress at midbay reaches the y1e1d alue defined ‘

natural consequence of the large value of f (6.80) used in an effort to
obtain an elastic failure. Nevertheleas, the test did demonstrate that
the Von Mises pressure can be exceeded.

Fortunately, since the test of BR-4B, other resulis have become
available that provide better data regarding the influence of stiffening
rings. These have been selected from tests of a number of machined
steel cylinders, 8 in. in diameter, most of which were recently reported.”
The cylinders in many cases had more typical bays than did ER-4B, but
there is no indication that the extra length had any influence on collapse
other than to isolate the central bays from end effects. In all cases,
failures were of the interframe variety, but in only a few was there evi-
dence of elastic buckling, Since none of them was instrumented for the
specific purpose of datecting an elastic failure, the cases cited here were
selected by comparing P, the critical buckling pressure according to
Equation [ 33], with an estimated yield pressure py. given by Von Sanden
and Ginther Formula [92A]. * The pressure Py is that at which the ex-

> AR A AT e inn vt

at an offset strain of 0.002. When Py axceeds Pes the poasibility of alas-
tic buckling exists, If P exceeds Py: the failure must be inelastic. On
this basis, three of the cylinders werein the slastic category. .Their prop-
orties and those of BR-4B are listed in Table 12. Since modulua meas-~
urements for the small cylinders were not available, a nominal value of
30 x 106 psi was assumed. The collapse pragsures, both experirmental
and theoretical, for the four cylinders appear in Table 13,

The influence of the frames is clearly seen by comparing the Ven
Mises pressures in the table with the experimental results. The additional
strength provided by the frames (as much as 22 percent) results f»rima-
rily from the fact that for each of the small cylinders, B was considerably
leas than for BR-4B, Evidently the present theory adequately accounts
for thie effect. In each case, the preassure given by Equation [33] agrees
well with the experimental pressure. These results are also presented
graphically in Figure 19. The abecigsa is Pc!Py and the ordinate 15 the
ratio of p,, tha experimental failure pressure, to py. The 45-deg line
drawn on the figare reprensents parfect agrecment between theory and

experiment. If p./p, is less than unity (indicated by the dotted line),
c! Py Y 4
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-+This.does.not.necessarily indicate that the observed failures were noti it
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elastic buckling is expected. It will

1.é e -
Py Yiewd Prossuro, formula (9241 7 be seen that the four cases of Table
is we * Critiza) Buchling Praciwy, Epatian{In | —
o f S Tpenmaney Pute Pk 13 all fall within this region and the
- plotted points all lie close to the 45-
4 deg line, Some of the zther tesis
(¥ e
§H TVl R reported in Reference 39 are also
L S T T T T/ s ~3A . -
o /] i plotted in the figure along with the
y - 08
. vawp L v teat of BR~4A. In all of these cases,
os I v pc/py exceeds unity, so that the
o ol , points are outside the elastic region
bt | B ] and, as expected, all lie below the
e T T R T R T VR TR Ry R TV . )
(WS 45-deg line.

- » These results indicate that the
Figure 19 - Experimental and

Theoretical Results performances of the four cylinders

- ~have been satisfactorily explained
using amall-deflection theory, and are consistent with earlier remarks
regarding the application of the Southwsll method for the case of BR-4R.

fact, precipitated by a "snép-through" mode of instability, That this phe-
nomenon can occur in cylindrical shells under hydrostatic pressure has
been demonstrated experimentally by Kirstein and Wenk,?! and theoretical-
ly by the large deflection analyses of Donnell,!"!® Langhaar and Boresi,!?
and Kempner and Crouzet-Pascal,?®” among others. However, these studies
have also shown that the preasure at which "snap-through' takes place is
not much less than the pressure given by small-deflection theory even in
the presence of imperfections.* For machined shells, this pressure dif-
ference might be too small to be detectable.

Table 13 also shows that according to the solution of Von Sanden and
Tolke,"* the pressures reflect some strengthening due to the presence of

the frameas, but etill fall short of experiment. This is to be expected since

*This is in marked contrast to the behavinr of cylindrical shells under
axial compressgion or torsion where the pressure difference can be very

large.
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the analyais considers the effect of the frames on the prebuckling defor-
madtions but fails to account for the restraint which they provide during
buckling. On the other hand, the Nash sclution for a shell with full fixity?®
greatly overagtimatea the atrength actnally raalized in each case, 28 thae
table indicates. This should be interpreted not as a refutation of the solu-
tion, but rather as evidence of its inapplicability for the cases considered.
It is poasible, 28 has already been indicated, that the analysis may be
quite accurate in cases where complete fixity ia actually attained.

Finally, it should be said that the experimental results reported
here, though meager, are all of which the author is aware. Unfortunately,
there are no data for internally framed cylinders, and none are apt to be
forthcoming because of the macéhining problems presented by internal
frames. '

While no future studies in the area of elastic shell instability are
contemplated, should a,dditionai‘experimental data become available, they
will be examined with interest. ' o

CONCLUSIONS

1. The amall deflection theory of this report predicts with accuracy

the elastic buckling of cylindrical shells supported by closely spaced ring

stiffeners, at least where stiffeners are external and f is greater than
4.0. Because of the restraint provided by the rings, the buckling strength
can be considerably greater than that expected for a shell with simple
support.

2. The solution of Von Sanden and Télke is conservative in all cases
because it accounts only partially for the strengthening influence of the
stiffeners.

3. The fact that the Nash analysis for a shell with clamped edges
greatly overestimates the buckling strength of ring-supported shells does
not necessarily indicate the use of an unrealistic buckling shape in the

analysis. It is more likely that the disparity exists chiefly because frames

of practical size do not provide restraint comparable to complete fixity.

4, Since the Von Mises analysis i8 based on the assumptions that the
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shell is unsupported prior to buckling and simply supported during buck-
ling, it can be highly inaccurate in predicting buckling pressures for ring-
stiifened shells. Nevertheless, it is probably the most practical means

for estimating elastic buckling strength hecanse it ia always congarvativa

and can be reprezented in a very simiple form,
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APPENDIX A

STRAIN ENERGY OF THE SHELL

In the development which follows, basic strain-displacement rela-

tions are obtained with accuracy preserved through quadratic terme in

the displacerments. The strain energy integral of the shell is then formu-

lated with dieplacement terms maintained through the third order.

" 'Wé consider an element situated within the thickness of the shell
at a radius r and having axial and angular coordinates = and 6. The
element undergoes displacements u', v', and w' in the axial, tangential,
and radial directions, respectively, with w' taken as positive outward,
Ws will assumr 3 that the strain in the radial direction ie negligible so

that only deformations within the plane of the element necd be considered.
Novozhilov*?

describes these deformations in terma of strain components
which will be deligna ed ‘xx' tgg» and ¢.q for cylindrical coordinates,

=“'9:‘"'+%[(“°) ("°"‘")2+(f"—'ﬂ;-‘i'->z] =

ul n! vi+w! wh - v'
0 e 0 , ¢]
o = v:"-{--—r-+u;‘(—}-)+v;;(- - )+ Wx( = )

where the subscripts on u', v', and w' indicate differentiation. In order
to calculate strain energy, it is necessary toc consider strains of line ele-

ments that lie along mutually perpendicular axes ~ in this case the x and

® coordinate lines. Thaszc strains, according to Novozhilov,*® can be ex-

preszed in terms of the strain components by

€, = N1+ 2¢ ~ 1

2

[67]
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sin fxe [67]

e 6 = - .
* NTTF 2e (1 + Zegg) continued

where ey and ey are unit strains in the x and 6 directions and eyg is
the shear strain expressing the chaage in the angle between the coordinate
lines. By combining Equations [66] and [67] and discarding all displace-

meiit. tpyrms of order higher than quadratic, omne obtains

e, = u;:+% (v;‘2+ w;‘z)
vht+w' un, 2  ,wp ~v'2
_ '8 1 0 o
eg = R + > [(T) +( - ) ] [68]

It may be surprising to note that retention of only linear terms in the
strain components, as was apparently done by Langhaar and Boresi,!?
leads to a slightly more complicated result.*

To relate the displacements u', v', w' at any point to the'diaplace-
menis u, v, w at the middle surface of the shell, it is useful to employ
relations developad by Langhaar and Boresi,

u' = u+t zg
vl = v+ 2w [69]
w' = w+ zY

*In that cage, the sirains are identical with the corresponding strain
components. However, the difference beiween Equationa [66] and [68]
is probably of little practical significance,
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where
;W =V
£ =-vvx+vx'\ R )+“xv'x
o = - () = o))
R R R R

where R is the radius to the middle surface of the shell and z ig the
thickness coordinate measured positive outward from the middle surface
of the shell. Equations [69] are based on the assumption of Kirchoff that
. normals to the undeformed middle surface remain normal, straight, and
unextended after deformation. By combining Equations [68’] and [69]

o #fter suitable differentiation, the resulting equations are- - - oo

' 2% N2
1
ey T Uy - ZWy + -z-(vi-l- wi) + z(vix Uy Wy + “xwxx) +
zNg w§ Ugg Wy
eg = M- +—(--—-+Nz) —( + Mg N + MNg
R 2\p2 R R
2
Wo 2 2
. ﬁ~)+-—--- (wlg + N?%) [70]
2 2 ZRZ
'!Ie uerv‘(
e.q = vx+»§~u=-~m(R‘I + weg) t Wy N -u vx---—Rmm%-—ﬁ(Zue L

tugw, +u w4 RMXN + RMNx+ Navx + vie + wa

N,
670
) (sz..--N + w_a Ng)

+ Ru‘,N F ormrasaee W_g M
- R

;:uN
o) ™
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where

Vot W
M = 0

R

Wg-v
. N =

R

In obtaining Equations {70], it was assumed that r could be replaced by
R with negligible loss of accuracy. A further simplification can be made
in e q by neglecting z/R in comparison to unity. Then

sv, 42 2 (N 4 )+ w N u.x'.qu‘
exe = Vx -E'*-IT( x' on Wx - Vx-—R—- [711
2z .
+ 'ﬁ'(z“xewx* Ug W + U, Weg + RM,‘N+ RMNx-i- Ne"x

Ng
R

-

2
X Z 2
+Wx9M) "':‘_;-i(a Wme'l' erNe) ‘

RE A"

e 1

In formuiatihg the expression for the strain energy Aoi thoi lheil. it. |
will be assumed that the stress in the radial direction is zero. According
to Langhaar and Boresi,!” the shell energy U, can then be expressed by

_— X3 a7 b | ‘ 2
Ug = ‘ J' J' fz [eii- eg+2vexea+(—:-‘1)eﬁ]lldxdadz
20w Je Jy dn 2
2 ‘172]
where E is Young's modulus and h is the shell thicknesa, After combin-

ing Equations [70] and [71] with Equation {72], performing the integra-
tion on 7z and discarding terms higher than the third order, one obtains:

7(2 2r u
U, - —2% Jf jr { w4 u (v2+ wl) e M2+ M(—-g- + NZ)
2(1-v©) x; Y0

R

uy (93 2\ M, 2, 2
+ ZV[\I_ M+--—(—-—2-+N) +-E*(Vx+wx)] [73]

+(1zv) L(V" ' '.ﬁ”) ' 2(vx ' "}i')(wa "%V T TR ) ax38
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1

2

{Maa W Wer

*u w m)|+Ne+wae—?Ne\~—-—-—+MeN%MNe ~)
2 2
v Yo Vxo Y90 Wx Wx

+2v[waxNe+ -wax(_—ﬁ—+ M9N+MN9 -T)

RNEMY 5
- RNG(N Vo b Ugye Wy + “xwxx)"" 5 + > (RNx + wxe)

e
-2 (vx + MR_) (RZW}“Nx + wyg Ng) - 2(RN, + wxe‘(z Uyg Wy

+ “wax"' ‘fxwxG + RMxN + RMNx+ vaw

u “" Ne Vx

. e ue NE Y TR L e W i ‘[731 :
+ Nv <6t Ru N_+ +w M)] dxde continued
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APPENDIX B

STRAIN ENERGY OF RINGS

The strain energy of a ring will be considered as the sum of three
quantities: UIP , the energy due to deformations in the plane of curva-
ture; Unp, the er ~rgy of deformations perpendicular to the plane of
curvature; and UroRr the energy due to torsion about an axis parallel
to the 6-coordinate linz:, Thus, the strain energy of a ring is
[74]

Uf:U + U

wpt Yop * UtoRr

In this equation, the energy associated with restricted warping as well as

that due to extensions of the ring in the z and x directions has been neg-
lected. ‘ '
Ujp is aimply the energy associated with the circumferential strain,
] -

vhtw! '\2
_ 8" ™ Vo )
o = Rte 2[ F-l-e R+e ] [76]

when the approximation is made that r can be replaced by R+ e. Refer-

|n—

ring to ngure 3, e is the distance between the middle surface of the shell
and the center of gravity of the ring cross section. When substitutions

from Equation [69] of Appendix A are made, Equation [76] becemes
R R “g 2) , z [YeeVx % Viays e
e = M--?—N-+--_.--( N) 3 + ( )
@ ~ R+e R 8 2(R+e) Rz R R R Rte

)] P 3 ) (w2, + Nz)} [77]

R+e VR

+ Mg N + MNy - -

1
N!m to
Niz
A



After this expression is substituted in Equation [75] and terms higher

than the third crder are discarded, one outains

<2
2 rZ‘}! s . s al 2
ER " MZ RM ] Z 4 2
UIP_-urn...\ I I +nn-( ‘)+N)+ 7Nﬁ
H‘J-\l G' JAf JO -L AN YT A ] Ru ’ K—

R R(R+e) 9 "x6

2
zZ Y90 Wx e Wx
+E{ZM —Ne'l' + Us W +M9N+MN9-—2—

L N2 R-e)] RNe(“e_zi_+Nz)} Z{RM(WH+N)

2 \R+e Rte Rz rZ (Rte
Yge W ' o .
X a x
- 2N + + Mg N + - — !
2 9[ ' R{Rve) "8 Wue * Mg N+ MNg - =
2 [78]
N” fR~e
F o | re— ] dA,d9
2 (R+e )]}] f

AT

) jﬁ%ﬁ?ﬁfﬁi maeﬂnﬂfuna'

IAf ZdAf = eAf

Ag

IxG is the moment of inertia about an axis normal to the area Af at its

[79]

2
IKG + Afe

center of gravity., Upp can then be written:

2 Zm 2
U = -—-—--ER A { [MZ + M (“9 + Nz) + S {ZM [-N + o0 x
2 2
w 2 =~ RN u
PRI +MnN+MNG--—’-‘—+E—<R'e\— 8 (e, Nz)\‘
R(Rte) 0 x0 2 2 \R+e/] R+e \R2 )

1 2 Uaa W
+1( xG_ . & ){Ng RM(W()H«:)-21\4'9{--——---—‘:’6 %

‘A RZ  RZ Rt R [80]
wE 2 R\
§ S g o Mg N+ MNy - =5 4§ =25 M e
R{R+e) ¢ v P2 2 \Ree/]f] it
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According to fundamental beam theory, the out-of-plane bending energy

is
EI 27
G
Upp = — f X% (R + e) d6 [81]
~ Jo

where I, is the moment of inertia of the ring about an axis parallel to

the z-coordinate through ity center of gravity and, according to Reference
34,

. “Goo ]
X = R+e[(g) x=ilyg R+eJ 8z}

up; is the axial displacement of the centroid of the ring; £ is the rotation
of the ring in the x-z plane as defined in Equation [69] of Appendix A.
Because each ring is assumed to andergo no strain in the axial direction,

-v.n

L1
"'6

With z replaced by e in Equation [69] of Appeﬁdix A, it follows that

UG * {“99 te(~w gt VyggN*t2v,gNg+ vaoe)] x= 1L,
S ~w, t AN in—-——l——- Upn + e{-w +v N
X * "Rre v R+e |00 T ¢l-W¥ro0 T Vxo0

[84]

+2v_ N, + v.N )]}
x0 9 x 6 x=iL£

Combining Equations [81] and [84] and discarding terms higher than the
third order, 2ns obiains -

em ; 2 u
% 4 F ee
U "( £ ) w ] 21w, -
oP ~ 2(R+e) f { R+e R+te %00 l x " Rie
(851
) e o N
) Xx= 1[4{
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According to Reference 34, the torsional energy is expressed by

27
_ EK 2
UTOR = T(14v) fo @ (Rte) dd [86]

where @ is the angle of twist per unit of circumference and K is the tor-
sion constant. For example, in the case of a rectangular ring where the
depth d is much greater than the width b, K is given by -}db3. When an
open section is comprised of several narrow rectangles, K for the section
is given approximately by the sum of the values K for each pari.*’ Refer-.
ence 42 gives values of K for rectangles where d does not greatly exceed
b. Reierence 34 defines the angle of twiat as

_ uGB
@ = m.[(ge)x=ila£ i R+e] [87]

After appropriate substitution thia hecomes

B e
(R+e)2

and the torsional energy is

2
: EK J‘ [ 2
U = , (Rw_qa + ug)

TOR 4(1+v)(R+e)3 0 x0 (3]

[89]

- 2R (wae + “e)("xeN + VxNG)] de
X= iLf

with terms above third order discarded.
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APPENDIX C

POTENTIAL OF ',THE EXTERNAL LOADS

The woih dune by ine exiernal ioads is defined as the product ot the
pressure and the change in veolun.e undergone by the cylinder during defor-

mation, or

W = p(V"-— V) 190]

where V and V' are the volumes before and after deformation, respec-

tively. The volume bounded by an element of the deformed shell is defined

av' = dA'de’ [91]

where A' is the area enclosed by the median surface of the shell in the
R -6 plane, and dl' is the length of the element mesaured in the x-direction.

Figure 20 - Deflected Flement of Shell
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dA' = ———2-—-(6'2 - 91') [92]
dl’ = X5 = Xy

The coordinatee can be expressed as follows:

L

Ry = [R+w)?+v¥)°
Ry = [(3 Wt w d0)% + (v + vg de)z]""

o v .
8, = 8, + o [93]

l -

' v+ved9

B, = O +d6+ ;

" When quantities above the second order are neglected,

aa' = % [{R + w)?’ t vg(R+w)+ v(vs we)] _ [94]
and
X x
2
w =£§ f [ve+2w+Rux+Zwu_£+vattx
2 Jy Jg ,
1 [95]
+ —%{- (wz + vgwt vz + vwﬁ)] dxde
. plT
But, since j {VE& + —ﬁ- ("ﬁ w by "‘"8)] 38 wvanishes because of continuiny,

0
therefore

kS 2T
R [z 2,2
w:i’_[ f (2w+ Ru_+ 2wu_+ vyu +w-)dxd6 [96]
2 ’ X b8 o K 14
=1{1 0

£8
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APPENDIX D

INFINITE SERIES FORMULATION OF THE INITIAL DEFLECTIONS

The axisymuneiric ciasiic deivimations of a ring-stiffencd
cal shell under external pressure were first analyzed by Von Sanden and
Giinther.’? This work was later extended by Pulos and Salerno®® t» include

the nonlinear or "beam-column' effect of the axial load. To express the
deflections in the form of a trigonometric scries it would, therefcore, be
possible to perform a straightforward Fourier expansion of either of these
closed form solutions. An alternative approach, however, is favored here
gince it leads quite simply to the desired result directly from ti\é equa-

tions of equilibrium with no dependence upon prior solutions.

E
&
#
;5
£
£
&
;

The axisymmetric deformations of the cylinder are described as .
follows:

w0

with the added condition that w, vanishes at a frame, Refei}ring to Equa-
tion [2] then, we have for the initial total potential,

b

o]

L. p2u -2 [98]
i - - -
. PR f f ( W+ Ru. 420 w+-“i—-}dxd9
2 X K R
0o Yo

Products of h” with third-order terms in the displacements have been neg-

lected in this equation. Because deformations in each bay are identical,

it is only necessary o carry out the integration on x from 0 to L.
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Integration with respect to 8 can, of course, be eliminated because of

axial symmetry.

If we consider the dependent variables to be u and — , then one of
x R

the equarions which resuitg irom equamng ihe first variation ol UT to

zero is
2 - 2
. pR(1-v®) & ['pR(l-v") 'I _2
U = SE— t R | =& V|- ¥x [99]

By making this substitution in Equation [98], retaining only linear and
quadratic terms in w and ite derivatives, and neglecting products of p2

with w, one obtains

It EnR (M G Eh’R be o - EAr 5
Pl ""i"d +"~""°"‘-‘—'E" wxxd‘i+-—--——( )
T2 Jo R 24(1-v%) J, 7 z(Ree) | x=0

e .

e **“’%"N"’f‘*x‘%wm\’:&

(2 v)+ X
R

R
m= -
where A is %ﬁ . When this series is subsiituted into Equation [100]
{

and the integration is performed

o A 4 - "
UT Eh Ly Y" - 2" T | EAg Sf.?, .2
= ey - + - ) w
M= = - M= ~m
[i0z]
oRL @ . 3 .
PR Ly % =2 {1 2 PR
- -—;-» (2 ~viw_ -~ pLys : m (-—- -V X_m) s -(1~v ) Lf
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The equations of equilibrium are obtained by minimizing with respect to

-
the w8

80, EhI; _ FA; ‘E‘ SR
[~ y 4. i} = - ——— - - - — =
oz R Yo' Rie . Wi 3 (2-v) - pLe{l-2v) w, =0
° mEme [103]
3Ur EhLg [ (47 EA; 2= 7 .
= W, 1+4(ﬂ)]+ W + pLew: (A% -142v) =0
9w R il B R+e m £¥5 V4%
J = -0

j#o0 ~ [104]

" 3(1-v2) Lif
where P° 18 c—————

Subiracting Equation [ 104) from Equation [103]

RERZ

| —
.J.f-_) R 2.1
( + B (2a? - 14 2v)

p
540 [105]
,
5 - PRT o
o~ 7ER 4V
= " 4
1+ a(25) 4 2BR 2
\P s En )
i

when % is negligible compared with unity and Zhiz >>1-2v. Summing

the G?j’s we obtain:

ym_' R e 1
- I P ]
W, = | W, = = (&~ |S e
) m [ © 2Eh ( )._ o/ lvonrnd 20 5
P m=-w 1+ 4{\""" 4 L A~
Eh m
pR® [106
B2 2 [ 106]
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W, is then determined by corbining Equations [103] and [106].

&, = %;(Z-V)(l-n)
1 ,
n 11{.‘1(“9_); 5 oa e
A, \'R/)T_& Pm
*m = _._\i 9
1+ 4(““') + "Ef: Az

8., can be put in A more convenient form as follows: If anunstiffened cylin-
' ' ka‘x) s
R *

der were to buckle in the axisymmetric configuration w = am cos(
the corresponding buckling pressure p,, would be given by

This equation also applies in the case of a long cylinder under end thrust

where the length of a complete axial buckling wave is equal to Lilm. If
Equations [107] and [108] are comhbin~d, we find that

1 C o
a, = n {109 ] ‘
e o510 2)
p Pm
From Equations [105) and [107], we have
2
- PR .
o] o .
w = .EB:(Z—V) 1-m - 27 74 cos (Frem Xy el
2Fh n <o fm Rl
m= !
- 92
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2 @ 22 x, [110]
- pR A Y m
W e (2 - V)[l - n a,, cos (T)] continued
m=-®

since a, equals unity. The combination of Equations [110] and [99]

gives

if quadratic terms in p are neglected.

One consequence of Equation [110] is a condition for axiuymmetric
buckling. It can be seen that w will increase without limit should 1/n
approach zero. The governing condition then is " o

So long as A; > 0, this condition can be met only when 'p > Py for one or

.more velues of m. If A= 0, Equation [112] ie satisfied when p = p,..

This is to be expected since Equation [108] helds only for buckling of an
unstiffened cylinder.* In that case the expression in Equation [110] for
w becomes indeterminate.

Tl =

For purposes of companson, the closed-form solution of Pulos and
Salerno® for w can be written as follows:

2
v PR 2.0l f(x)

2Eh r Lh r:-)(b )]
f P+ == (14=1{=+GC
) (O)l Af ( R L 4

[113]

*1t should be emphasized-that the buckling configurations mentioned
here are all of a single class characterized bv aymrmnetry abont a frame
and need not correspond to the minimur buckling pressure. Configura-
tions of the nonsymmetric class, permitiing frame rotation, <an resgult
in lower pressures, depending on the geometry of the cylinder.
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where
£(x) = py[coshX x sinK, (L -x)+ coshK, (L-x)sinK, x ]

+ B, [sinh K x cos K, (L~ %) + sinhK, (L - x) cos K, x ]

Zp.i Mo Lg l’ coshKlL'. - co8 KZL ]

Y TTeL | iy sinh KL + p sinK, L,
K P-lﬁ K P-zﬂ
o ST

~ where L s the inner, or unsupportsd, frame apacing and b is the_ faying
 width of a frame., If b is neglected, L equale Lj; and Equations [110]
and [113] should e aquivalent. Equating these.two expressions at x = 0,

we find that

o | © 1 ' '
N _ L
i "7 el mr\TY. P G
=" A
p " Pm [114]
8 ' [ By 8inhp, B+ py sinp,
2P coshp B - cosp,p ]
and
ob 2A.x
1
- PRZ mlz;m am COH( ) -
W= -—2—-;:“1: ]." = L h [115]
- _..gwflJrg).;..l.
£ ' R P,
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Combining Equations {113] and [115] vields the additional result:

FATITS ' = 22 x
flw) = .__l.__é. (C"..‘Eh wo B - cos ;_,_z A\ ; :‘:m cos ("_ m ) {116}
Al ’ ) : R -
ﬁ ms=-m

The principal reason for introducing- the Pulos and Salerno solution
‘was to provide the alternative means (Equation [114]) when needed for
. m N ’
computing  }) a.,+ Graphs of the function G can be found in Reference

M =

33 where it is designated F, for p< p* and Fg for p> p*. In cases
where p << p¥, it follows from Equation [108] that p << p,,. Then Equa--
tion [114] reduces to : '

© o ' .
57a - ! =E[.3L".‘lP_f_fEif‘_.E_] NIt
A2 Lafm)s 2leemeears] M

i ' Ll

For pur‘pmwl of buckJi’ing calculations, this latter equatioﬁ is usua}ﬁy suf-
ficient. Furthermore, it is often as simple to work with the series form
since, except for large»v'aluel of B, convérgence is quite rapid.! Usually
only three or four terms will provide good iccuracy. |

a
sy

TUﬂing a comparison test with the convergent series 4, —— , one
= &
m=]1 m
can eagily show that the series {Equation [117]) converges for all finite
values of B,
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APPENDIX E

STRESS FUNCTION

‘I'he energy expression in Equation | 5] is extremely unwieldy as it
stands. It can be greatly simplified if u and v can be somehow eliminated.
To do this, use wiil be made of a stress function following the method of
Donnell,*3 )

The strain-displacement relations with only linear terms retained
are

€x0 Bzw
2

1
o
po——
P
Pms
0
p—

"ox2  R2pgZ ROxB0 5
But, from the fundamental definitions of plane strain

ex = ':—,.(O'x" VO'G)

1
eq = _'F—‘.(Ue -V O,) f120]
_ 2(1+v)
€x0 ~ W Oxo

where ¢, 0g and 0,4 are, respectively, the axial, circumferential,

and shear stresses. Combining Equations [119] and [120] we find

[a& i Jf’ [ LA 82]0 214v) 7 750 B 2w o
- ott——s - x " . oy =
ax>  RZppe R%ag2  9xl] R 9x088 R 5,2 »

[121]
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The stress function F is defined as follows:

p2 F
r2 902

<

x0 T T R 9x 80

Equation [121] now becomes

[122]

[123]
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APPENDIX F

DETERMINATION OF THE MODULUS OF ELASTICITY
FOR CYLINDER BR-4B

Young's modulus for the test cylinder was determined by measuring
the deflections under concentrated loading of a ring taken from one end of -
the cylinder. Although not in common practice, this method has certain
advantages. One is that relatively large elastic deflections can be pro-

duced which are easier to measure accurately than, for example, strains

E
i
g‘
E

in an axiélly gtressed rod. Ancther advantage is that a larger, and there-
fore more representative, specimen of the 'cylinder can be used.

After the test of BR-4B had been completed, the bulkhead ring near-
aat the damage}d portion (Figu¥e 13) was cut from the cylinder and ma-
chined tq'the following dimensions:

Mean radius (R) -"=7 8.196 in.
(d) = 035854

PP

' The ring was placed verticai;.;lly between the heads of a universal tosting

Depth

.
Puzyu

machine and was set in position by an initial compressive load of 50 1b.
The load was then increased in 50-1b increments up to 35C 1t -rhile the
shortenirii;; of the vertical diameter of the ring was measured with a dial
indicator. The ring was unloaded in the samie manner., Two suck runs
were made and, in each case, measurements during loading xad vwaload-

. ing agreed within 0,002 in., The results of the tegt are chown graphically

in Figurae 21, .
According to Reference 44, for a ring of reftangular cross section,
the change A in the diameter produced by the load P can be expressed

as follows:

Yy
-

_i;_; ) > [125]
‘:i; c = d- [1 + -]-"—(—(-1—) ]
gi 12R 15 \R
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Figure 21 - Determination of Young!s Modulus for BR-4B
(Response of Ring to Diametral Loading)

K}

The equation is applicable to thick rings and accounts for direct and
shear siresses as weil as bending effects. For the ring in question, the

result i

E = 2.88x10° = [126]

From the slopes of the plots of Figure' 21, the values for E in pounds per
28

2
; — s c 5o o b
square inch were 28.8 x 106 and 29.0 x10°%. An average value of 28.9 x 10~

psi was thereby determined.
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